【題目】如圖,直三棱柱ABC-A1B1C1中,且,E是棱CC1中點(diǎn),F是AB的中點(diǎn).
(1)求證:CF//平面AEB1;
(2)求點(diǎn)B到平面AEB1的距離.
【答案】(1)見解析;(2).
【解析】
(1)取AB1中點(diǎn)G,連結(jié)EG、FG,推導(dǎo)出四邊形CEGF為平行四邊形,從而CF∥EG,由此能證明CF∥平面AEB1;(2)推導(dǎo)出CF⊥AB,CF⊥BB1,推導(dǎo)出E到平面ABB1的距離等于C到平面ABB1的距離等于1,設(shè)點(diǎn)B到平面A的距離為d.由,能求出點(diǎn)B到平面A的距離.
(1)取中點(diǎn),連結(jié),則∥且.
∵當(dāng)為中點(diǎn)時,∥且,
∴∥且 .
∴四邊形為平行四邊形,則∥
又∵,,
∴平面;
(2)∵中,,是中點(diǎn)
∴.
又∵直三棱柱中,,,
∴,且到的距離為.
∵平面
∴到的距離等于到的距離等于.
設(shè)點(diǎn)到平面的距離為.
∵
∴,易求,,解得.
∴點(diǎn)到平面的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
項(xiàng)目 | 男性 | 女性 | 總計(jì) |
反感 | 10 | ||
不反感 | 8 | ||
總計(jì) | 30 |
已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是.
(1)請將上面的列聯(lián)表補(bǔ)充完整(直接寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?
(2)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】抽樣得到某次考試中高二年級某班8名學(xué)生的數(shù)學(xué)成績和物理成績?nèi)缦卤恚?/span>
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)成績x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理成績y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
(1) 求y與x的線性回歸直線方程(系數(shù)保留到小數(shù)點(diǎn)后兩位).
(2) 如果某學(xué)生的數(shù)學(xué)成績?yōu)?3分,預(yù)測他本次的物理成績.
(參考公式:回歸直線方程為=x+,其中
,a=-b.參考數(shù)據(jù):=77.5,
≈84.9,,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,過左焦點(diǎn)F1(-2,0)作x軸的垂線交橢圓于P,Q兩點(diǎn),PF2與y軸交于E,A,B是橢圓上位于PQ兩側(cè)的動點(diǎn).
(1)求橢圓的離心率e和標(biāo)準(zhǔn)方程;
(2)當(dāng)∠APQ=∠BPQ時,直線AB的斜率kAB是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美,定義:能夠?qū)A的周長和面積同時等分成兩個部分的函數(shù)稱為圓的一個“太極函數(shù)”,則下列有關(guān)說法中:
①對于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)是圓的一個太極函數(shù);
③存在圓,使得是圓的一個太極函數(shù);
④直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù);
⑤若函數(shù)是圓的太極函數(shù),則
所有正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行六面體ABCD-A1B1C1D1中,E,F,G分別是A1D1,D1D,D1C1的中點(diǎn).
(1)求證:EG∥AC;
(2)求證:平面EFG∥平面AB1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A= ,P為△ABC的外心,若 =λ1 +2λ2 ,其中λ1與λ2為實(shí)數(shù),則λ1+λ2的最大值為( )
A.
B.1﹣
C.
D.1+
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)是奇函數(shù),求實(shí)數(shù)的值;
(2)在(1)的條件下,判斷函數(shù)與函數(shù)的圖象公共點(diǎn)個數(shù),并說明理由;
(3)當(dāng)時,函數(shù)的圖象始終在函數(shù)的圖象上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1)求的單調(diào)區(qū)間和極值;
(2)證明:若存在零點(diǎn),則在區(qū)間上僅有一個零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com