【答案】
分析:(1)設(shè)AC∩BD=G,連接GF.由BF⊥面ACE,得到BF⊥CE,再由BE=BC,得到F為EC的中點(diǎn).在矩形ABCD中,G為AC中點(diǎn),由三角形的中位線可得到GF∥AE.再由線面平行的判定定理得證.
(2)如圖所示:轉(zhuǎn)化頂點(diǎn),以平面ADC為底,又因?yàn)镺E⊥AB,OE⊥AD,得到OE⊥面ADC.所以O(shè)E為底面上高,分別求得底面積和高,再用三棱錐的體積公式求解.
解答:證明:(1)設(shè)AC∩BD=G,連接GF.
因?yàn)锽F⊥面ACE,CE?面ACE,所以BF⊥CE.
因?yàn)锽E=BC,所以F為EC的中點(diǎn).(3分)
在矩形ABCD中,G為AC中點(diǎn),所以GF∥AE.(5分)
因?yàn)锳E?面BFD,GF?面BFD,所以AE∥面BFD.(7分)
(2)取AB中點(diǎn)O,連接OE.因?yàn)锳E=EB,所以O(shè)E⊥AB.
因?yàn)锳D⊥面ABE,OE?面ABE,所以O(shè)E⊥AD,
所以O(shè)E⊥面ABD.(9分)
因?yàn)锽F⊥面ACE,AE?面ACE,所以BF⊥AE.
因?yàn)镃B⊥面ABE,AE?面ABE,所以AE⊥BC.
又BF∩BC=B,所以AE⊥平面BCE.(11分)
又BE?面BCE,所以AE⊥EB.
所以

,

.(12分)
故三棱錐E-ADC的體積為

.(14分)
點(diǎn)評:本題主要考查線線,線面關(guān)系的轉(zhuǎn)化,考查了線面平行,垂直的判定定理以及三棱錐體積的求法,屬中檔題.