如圖,△ABC的BC邊的中點(diǎn)為M,利用向量證明:AB2+AC2=2(AM2+BM2).

【答案】分析:根據(jù)題意和向量加法的四邊形法則列出向量、的關(guān)系,利用數(shù)量積和余弦定理把向量轉(zhuǎn)化為三角形中邊之間的關(guān)系.
解答:證明:設(shè)==,=,
∵BC邊的中點(diǎn)為M,
∴由四邊形法則得=,
==++2
=2+2+||•||•cos∠BAC
=||2+||2+||•||•
=AB2+AC2+(AB2+AC2-BC2).
∴AM2=AB2+AC2-BC2
又∵BC2=4BM2,
∴AB2+AC2=2(AM2+BM2).
點(diǎn)評(píng):本題考查了向量在幾何中的應(yīng)用,主要根據(jù)題意和圖形構(gòu)造向量,利用向量的運(yùn)算進(jìn)行求解或證明,常用知識(shí)點(diǎn)是:利用數(shù)量積運(yùn)算實(shí)現(xiàn)向量和實(shí)數(shù)之間的轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

21、如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線相交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D.
求證:ED2=EB•EC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC的BC邊的中點(diǎn)為M,利用向量證明:AB2+AC2=2(AM2+BM2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線相交于點(diǎn)E,∠BAC的平分線與BC
交于點(diǎn)D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在以O(shè)為極點(diǎn)的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點(diǎn).A,B,C,求線段AB的長(zhǎng).
D.選修4-5:不等式選講
對(duì)于實(shí)數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC的BC邊的中點(diǎn)為M,利用向量證明:AB2+AC2=2(AM2+BM2).

查看答案和解析>>

同步練習(xí)冊(cè)答案