1.已知整數(shù)對的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按規(guī)律,第600個數(shù)對為(5,31).

分析 根據(jù)括號內(nèi)的兩個數(shù)的和的變化情況找出規(guī)律,然后找出第80對數(shù)的兩個數(shù)的和的值以及是這個和值的第幾組,然后寫出即可.

解答 解:(1,1),兩數(shù)的和為2,共1個,
(1,2),(2,1),兩數(shù)的和為3,共2個,
(1,3),(2,2),(3,1),兩數(shù)的和為4,共3個,
(1,4),(2,3),(3,2),(4,1),兩數(shù)的和為5,共4個

∵1+2+3+…+32=528,
1+2+3+…+32+33=561,
1+2+3+…+34=595,
∴第600對數(shù)是兩個數(shù)的和為35的數(shù)對中的第5對數(shù),
即(5,31).
故答案為:(5,31).

點評 此題考查的知識點是數(shù)字變化類問題,解題的關(guān)鍵是通過觀察得出數(shù)字的排列規(guī)律求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+6sinxcosx-2cos2x+1.
(1)求f(-$\frac{π}{24}$)的值.
(2)若x∈(0,π)求函數(shù)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知4an+1-4an-9=0,則數(shù)列{an}是(  )
A.公差為9的等差數(shù)列B.公差為$\frac{9}{4}$的等差數(shù)列
C.公差為4 的等差數(shù)列D.不是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某家具廠的原材料費支出x與銷售量y(單位:萬元)之間有如表數(shù)據(jù),根據(jù)表中提供的全部數(shù)據(jù),用最小二乘法得出y與x的線性回歸方程為$\stackrel{∧}{y}$=8x+$\stackrel{∧}$,則$\stackrel{∧}$為( 。
X24568
y2535605575
A.5B.15C.10D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)非空數(shù)集A={x|-3≤x≤a},B={y|y=3x+10,x∈A},C={z|z=5-x,x∈A}且B∩C=C,則實數(shù)a的取值范圍是[-$\frac{2}{3}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.實數(shù)x、y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,那么μ=22x-y+2的最大值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知不等式組$\left\{\begin{array}{l}x+y≤1\\ x-y≥-1\\ y≥0\end{array}\right.$所表示的平面區(qū)域為D.若目標(biāo)函數(shù)z=ax-y-2在區(qū)域D上的最大值為2,則實數(shù)a的值為(  )
A.-2B.4C.-2或4D.-4或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{y≥0}\\{x-y+1≥0}\\{x+y-3≤0}\end{array}\right.$,則z=2x-y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知角φ的終邊經(jīng)過點P(3,-4),函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象的相鄰兩條對稱軸之間的距離等于$\frac{π}{2}$,則$f(\frac{π}{4})$=(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案