已知△ABC的頂點(diǎn)坐標(biāo)為A(1,1,1)、B(2,2,2)、C(3,2,4),則△ABC的面積是
 
分析:先利用向量的夾角公式求出∠BAC的余弦值,再利用面積公式S=
1
2
bcsinA
即可得解.
解答:解:
AB
=(1,1,1),
AC
=(2,1,3),
cos<
AB
,
AC
>=
6
3
14
=
42
7
,
∴sinA=
7
7
,
∴S△ABC=
1
2
|
AB
||
AC
|sinA=
1
2
3
14
7
7
=
6
2
,
故答案為
6
2
點(diǎn)評(píng):本題考查了空間向量的坐標(biāo)運(yùn)算,以及面積公式S=
1
2
absinC
,屬于基本題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,已知△ABC的頂點(diǎn)坐標(biāo)為A(0,0),B(2,0),C(2,1),求△ABC在矩陣MN作用下變換所得到的圖形的面積,這里矩陣:M=
.
20
02
.
,N=
.
0-1
10
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)坐標(biāo)為A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,則AD的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)坐標(biāo)為A(4,0)、B(0,2)、C(3,3).
(Ⅰ) 求AB邊上的高線所在的直線方程;      
(Ⅱ) 求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,已知△ABC的頂點(diǎn)坐標(biāo)為A(0,0),B(-1,2),C(0,3).求△ABC在矩陣
0-1
10
作用下變換所得到的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:(本小題共3小題,請(qǐng)從這3題中選做2小題,如果3題都做,則按所做的前兩題記分,每小題7分.)
(1)(矩陣與變換)在直角坐標(biāo)系中,已知△ABC的頂點(diǎn)坐標(biāo)為A(0,0)、B(1,1)、C(0,2),矩陣M=
01
10
,N=
0-1
10
,求△ABC在矩陣MN作用下變換所得的圖形的面積;
(2)(坐標(biāo)系與參數(shù)方程)極坐標(biāo)系下,求直線ρcos(θ+
π
3
)=1
與圓ρ=
2
的公共點(diǎn)個(gè)數(shù);
(3)(不等式)已知x+2y=1,求x2+y2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案