已知2
2
≤x≤8,求函數(shù)f(x)=log2
x
2
log2
x
4
的最大值與最小值.
分析:由通過x的范圍,求出log2x的范圍,化簡(jiǎn)所求表達(dá)式為log2x的二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)即可求解
解答:解:∵2
2
≤x≤8,
3
2
≤log2x≤3,
f(x)=log2
x
2
log2
x
4

=(log2x-1)(log2x-2)
=(log2x)2-3log2x+2
=(log2x-
3
2
2-
1
4

當(dāng)log2x=3時(shí),f(x)max=2
當(dāng)log2x=
3
2
時(shí),f(x)min=-
1
4
點(diǎn)評(píng):本題主要考查了二次函數(shù)在閉區(qū)間上的最值的求解,解題的關(guān)鍵是根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)確定出對(duì)數(shù)的范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0)

(1)若x=
π
6
,求向量
a
c
的夾角;
(2)已知f(x)=2
a
b
+1
,且x∈[
π
2
,
8
]
,當(dāng)f(x)=
2
2
時(shí),求x的值并求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開家前能得到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(Ⅰ)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[|m+n|2上是增函數(shù)的概率;
(Ⅱ)設(shè)點(diǎn)(
1
2
,|m+n|min=
2
2
)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求MD上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•沈陽二模)在一次數(shù)學(xué)測(cè)驗(yàn)后,班級(jí)學(xué)委對(duì)選答題的選題情況進(jìn)行統(tǒng)計(jì),如下表:
平面幾何選講 極坐標(biāo)與參數(shù)方程 不等式選講 合計(jì)
男同學(xué)(人數(shù)) 12 4 6 22
女同學(xué)(人數(shù)) 0 8 12 20
合計(jì) 12 12 18 42
(1)在統(tǒng)計(jì)結(jié)果中,如果把平面幾何選講和極坐標(biāo)與參數(shù)方程稱為幾何類,把不等式選講稱為代數(shù)類,我們可以得到如下2×2列聯(lián)表:
幾何類 代數(shù)類 合計(jì)
男同學(xué)(人數(shù)) 16 6 22
女同學(xué)(人數(shù)) 8 12 20
合計(jì) 24 18 42
據(jù)此統(tǒng)計(jì)你是否認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān),若有關(guān),你有多大的把握?
(2)在原統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知這名學(xué)委和兩名數(shù)學(xué)科代表都在選做“不等式選講”的同學(xué)中.
①求在這名學(xué)委被選中的條件下,兩名數(shù)學(xué)科代表也被選中的概率;
②記抽取到數(shù)學(xué)科代表的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表僅供參考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案