【題目】已知為直角坐標(biāo)系的坐標(biāo)原點(diǎn),雙曲線 上有一點(diǎn)),點(diǎn)軸上的射影恰好是雙曲線的右焦點(diǎn),過(guò)點(diǎn)作雙曲線兩條漸近線的平行線,與兩條漸近線的交點(diǎn)分別為, ,若平行四邊形的面積為1,則雙曲線的標(biāo)準(zhǔn)方程是( )

A. B. C. D.

【答案】A

【解析】設(shè)平行線方程為,由,解得,則,又點(diǎn)到直線的距離,化簡(jiǎn)得: ,又,又,解得,所以方程是,故選A.

【方法點(diǎn)晴】本題主要考查雙曲線的簡(jiǎn)單性質(zhì)、雙曲線的漸近線及待定系數(shù)法求雙曲線方程,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問(wèn)題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫(huà)出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是正項(xiàng)數(shù)列的前項(xiàng)和,滿足,.

)求數(shù)列通項(xiàng)公式;

)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛(ài)游泳是否有關(guān),對(duì)100名高三學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

10

女生

20

合計(jì)

已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為

(Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;

(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,點(diǎn)D,E分別是邊AB,AC上的一點(diǎn),且滿足AD= AB,AE= AC,若BE⊥CD,則cosA的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為2的正方體中, , , 分別是棱 , , 的中點(diǎn),點(diǎn), 分別在棱, 上移動(dòng),且.

(1)當(dāng)時(shí),證明:直線平面

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是正數(shù)組成的數(shù)列, ,且點(diǎn) 在函數(shù)的圖象上.

(1)求數(shù)列的通項(xiàng)公式;

(2)若列數(shù)滿足,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級(jí)隨機(jī)選取了20名男生、20名女生,進(jìn)行空間圖形識(shí)別測(cè)試,得到成績(jī)莖葉圖如下,假定成績(jī)大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正常”.

(1)完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為“空間想象能力突出”與性別有關(guān);

空間想象能力突出

空間想象能力正常

合計(jì)

男生

女生

合計(jì)

(2)從“空間想象能力突出”的同學(xué)中隨機(jī)選取男生2名、女生2名,記其中成績(jī)超過(guò)90分的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

下面公式及臨界值表僅供參考:

0.100

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,且,則不能等于(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,(

(1)寫(xiě)出直線經(jīng)過(guò)的定點(diǎn)的直角坐標(biāo),并求曲線的普通方程;

(2)若,求直線的極坐標(biāo)方程,以及直線與曲線的交點(diǎn)的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案