3.若所有形如3a+$\sqrt{2}$b(a∈Z,b∈Z)的數(shù)組成集合A,判斷6-2$\sqrt{2}$是不是集合A中的元素.

分析 根據(jù)元素與集合的關(guān)系進(jìn)行判斷

解答 解:所有形如3a+$\sqrt{2}$b(a∈Z,b∈Z)的數(shù)組成集合A,
當(dāng)a=2,b=-2時(shí),可得集合A中的元素為:6-2$\sqrt{2}$.
∴6-2$\sqrt{2}$是集合A中的元素.

點(diǎn)評 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知常數(shù)ω>0,f(x)=-1+2$\sqrt{3}$sinωxcosωx+2cos2ωx圖象的對稱中心得到對稱軸的距離的最小值為$\frac{π}{4}$,若f(x0)=$\frac{6}{5}$,$\frac{π}{4}$≤x0≤$\frac{π}{2}$,則cos2x0=(  )
A.$\frac{3+2\sqrt{3}}{10}$B.$\frac{3-2\sqrt{2}}{10}$C.$\frac{3+4\sqrt{3}}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a>0,且a≠1,若ab>1,則( 。
A.ab>bB.ab<bC.a>bD.a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow{a}$=(-1,3)與$\overrightarrow$=(0,6),求5$\overrightarrow{a}$-2$\overrightarrow$的坐標(biāo),并求|5$\overrightarrow{a}$-2$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2sin(x+$\frac{π}{6}$)-2cosx,x∈[$\frac{π}{2}$,π].
(1)若sinx=$\frac{4}{5}$,求函數(shù)f(x)的值;
(2)求函數(shù)f(x)的值域和對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC中,2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,求$\frac{{S}_{△OBC}}{{S}_{△ABC}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知在△ABC中,AB=AC=6,∠BAC=120°,D是BC邊上靠近點(diǎn)B的四等分點(diǎn),F(xiàn)是AC邊的中點(diǎn),若點(diǎn)G是△ABC的重心,則$\overrightarrow{GD}$•$\overrightarrow{AF}$=-$\frac{21}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn)與它的一個(gè)頂點(diǎn)的連線構(gòu)成等腰直角三角形,直線x+y=0與以橢圓C的右頂點(diǎn)為圓心,以2b為半徑的圓相交所得的弦長為2$\sqrt{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過橢圓C右焦點(diǎn)F2的直線l與橢圓交于點(diǎn)P、Q,若以O(shè)P,OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn),G分別是棱BC,CC1,CD的中點(diǎn),平面α過點(diǎn)B1且與平面EFG平行,則平面α被該正方體外接球所截得的截面圓的面積為為$\frac{2}{3}π$.

查看答案和解析>>

同步練習(xí)冊答案