已知數(shù)列{an}是等差數(shù)列,Sn是其前n項的和,求證S6,S12-S6,S18-S12也成等差數(shù)列.
考點:等差數(shù)列的性質
專題:等差數(shù)列與等比數(shù)列
分析:設出原等差數(shù)列的首項和公差,然后直接利用等差數(shù)列的定義證明S6,S12-S6,S18-S12也成等差數(shù)列.
解答: 證明:設等差數(shù)列{an}的首項為a1,公差為d,
S6=6a1+
6×5d
2
=6a1+15d
,
S12=12a1+
12×11d
2
=12a1+66d

S18=18a1+
18×17d
2
=18a1+153d

∵(S12-S6)-S6=S12-2S6=36d.
(S18-S12)-(S12-S6)=S18-2S12+S6=36d.
∴(S18-S12)-(S12-S6)=(S12-S6)-S6,
數(shù)列S6,S12-S6,S18-S12也成等差數(shù)列.
點評:本題考查了等差數(shù)列的性質,對于學生來說,關鍵是對該性質的記憶與應用,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
9
-
y2
b2
(b>0)的焦點為F1(-5,0),F(xiàn)2(5,0),則b等于( 。
A、3
B、4
C、5
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

非零向量
a
,
b
滿足|
a
|=1,|
b
|=2,|
a
-
b
|=2,則|
a
+
2b
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時,總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù),下列說:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②函數(shù)y=tanx,x∈(-
π
2
,
π
2
)是單函數(shù);
③若函數(shù)f(x)是單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④若f:A→B是單函數(shù),則對于任意b∈B,它至多有一個原象;
⑤若函數(shù)f(x)是某區(qū)間上的單函數(shù),則函數(shù)f(x)在該區(qū)間上具有單調性.
其中正確的是
 
.(寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是公差不為0的等差數(shù)列,a1=
3
2
,數(shù)列{bn}是等比數(shù)列,且b1=a1,b2=-a3,b3=a4,數(shù)列{bn}的前n項和為Sn,記點Qn(bn,Sn),n∈N*
(1)求數(shù)列{bn}的通項公式;
(2)證明:點Q1、Q2、Q3、…、Qn、…在同一直線l上,并求出直線l方程;
(3)若A≤Sn-
1
Sn
≤B對n∈N*恒成立,求B-A的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|x+2y+3z|≥4(x,y,z∈R)
(Ⅰ)求x2+y2+z2的最小值;
(Ⅱ)若|a+2|≤
7
2
(x2+y2+z2)對滿足條件的一切實數(shù)x,y,z恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在半徑為3m的
1
4
圓形(O為圓心)鋁皮上截取一塊矩形材料OABC,其中點B在圓弧上,點A、C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個以AB為母線的圓柱形罐子的側面(不計剪裁和拼接損耗),設矩形的邊長AB=xm,圓柱的體積為Vm3
(1)寫出體積V關于x的函數(shù)關系式,并指出定義域;
(2)當x為何值時,才能使做出的圓柱形罐子體積V最大?最大體積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=cos
x+θ
2
(0≤θ<2π)為奇函數(shù),則θ等于( 。
A、0
B、
π
2
C、π
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

七個同學排成一列縱隊進行廣播操表演,其中三位同學穿白衣服,四位同學穿紅衣服,若除最前面的一個同學外,其余每個同學看見前面的同學穿紅衣服的人數(shù)比穿白衣服的人數(shù)多.那么所有滿足條件的不同排法總數(shù)是( 。
A、840B、720
C、600D、576

查看答案和解析>>

同步練習冊答案