【題目】某公司有男性職工64名,一次體檢后,將他們的體重(單位:kg)分組為:,,,繪制出頻率分布直方圖如圖,圖中從左到右的前3個小組的頻率之比為.

1)求這64名男職工中,體重小于60kg的人數(shù);

2)從體重在kg范圍的男職工中用分層抽樣的方法選取6名,再從這6名男職工中隨機選取2名,記“至少有一名男職工體重大于65kg”為事件,求事件發(fā)生的概率.

【答案】124;(2.

【解析】

1)設50~55kg這個小組對應的頻率為a,依題意得到方程組,解得即可;

2)首先求出體重在60~65kg65~70kg的人數(shù),分別記他們?yōu)?/span>,,,,,利用列舉法列出所有可能結果,最后再利用古典概型的概率公式計算可得;

解:(1)設50~55kg這個小組對應的頻率為a.

65~75kg對應的頻率為,

,解得.

50~60kg對應的頻率為0.375,從而所求人數(shù)為.

2男職工體重在60~65kg65~70kg的頻率之比為

6名男職工體重在60~65kg65~70kg的個數(shù)分別為4,2.

分別記他們?yōu)?/span>,,,從中隨機選取2名的所有情況為

,,,,,,,,,共15個基本事件,

其中事件A包含9個基本事件,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】均為大于1的整數(shù).證明:存在個不被整除的整數(shù),若將它們任意分成兩組,則總有一組有若干個數(shù)的和被整除.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)當時,求函數(shù)的最大值;

2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;

3)當,,方程有唯一實數(shù)解,求正數(shù)的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線,過拋物線焦點且與軸垂直的直線與拋物線相交于、兩點,且的周長為.

(1)求拋物線的方程;

(2)若直線過焦點且與拋物線相交于、兩點,過點、分別作拋物線的切線、,切線相交于點,求:的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若在定義域內存在,使得成立,則稱為函數(shù)的局部對稱點.

1)若,證明:函數(shù)必有局部對稱點;

2)若函數(shù)在定義域內有局部對稱點,求實數(shù)的取值范圍;

3)若函數(shù)上有局部對稱點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電子科技公司由于產品采用最新技術,銷售額不斷增長,最近個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中表示年第一季度,以此類推):

季度

季度編號x

銷售額y(百萬元)

1)公司市場部從中任選個季度的數(shù)據(jù)進行對比分析,求這個季度的銷售額都超過千萬元的概率;

2)求關于的線性回歸方程,并預測該公司的銷售額.

附:線性回歸方程:其中

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們對“延遲退休年齡政策”的態(tài)度,責成人社部進行調研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機調查100人,調查數(shù)據(jù)的頻率分布直方圖如圖所示, 支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結果如表:

年齡(歲)

支持“延遲退休年齡政策”人數(shù)

15

5

15

28

17

(I)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

年齡低于45歲的人數(shù)

年齡不低于45歲的人數(shù)

總計

支持

不支持

總計

(II)通過計算判斷是否有的把握認為以45歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度有差異.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】遞增的等差數(shù)列的前項和為.是方程的兩個實數(shù)根.

1)求數(shù)列的通項公式;

2)當為多少時,取最小值,并求其最小值;

3)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P—ABCD中,底面ABCD是菱形,∠ABC=60°,PA=AC,PB=PD=AC,EPD的中點,求證:

(1)PB∥平面ACE;

(2)平面PAC⊥平面ABCD.

查看答案和解析>>

同步練習冊答案