在直角坐標(biāo)系中,如果兩點(diǎn)A(a,b),B(-a,-b)函數(shù)y=f(x)的圖象上,那么稱[A,B]為函數(shù)f(x)的一組關(guān)于原點(diǎn)的中心對稱點(diǎn)([A,B]與[B,A]看作一組).函數(shù)g(x)=關(guān)于原點(diǎn)的中心對稱點(diǎn)的組數(shù)為   
【答案】分析:本題可以做出函數(shù)的圖象,利用數(shù)形結(jié)合的思想來解答.由題意函數(shù)的兩段圖象上存在某些點(diǎn)關(guān)于原點(diǎn)對稱,本題就是考查這樣的性質(zhì).作出函數(shù)y=log4(x+1),x>0的關(guān)于原點(diǎn)對稱的圖象,然后觀察它與函數(shù)y=,x≤0的圖象的交點(diǎn)個(gè)數(shù)即可解答.
解答:解:函數(shù)y=log4(x+1),x>0的圖象過空心點(diǎn)(0,0)和實(shí)點(diǎn)(3,1),作出其關(guān)于原點(diǎn)的對稱圖象,如圖,
顯然它與函數(shù)y=,x≤0的圖象有兩個(gè)交點(diǎn),因此關(guān)于原點(diǎn)的中心對稱點(diǎn)的組數(shù)為2.
故答案為:2.

點(diǎn)評:本題考查新定義問題的理解應(yīng)用能力,考查分段函數(shù)的概念,函數(shù)圖象及其對稱性的知識(shí),函數(shù)奇偶性的考查等,對作圖,識(shí)圖的思維能力要求較高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,如果兩點(diǎn)A(a,b),B(-a,-b)函數(shù)y=f(x)的圖象上,那么稱[A,B]為函數(shù)f(x)的一組關(guān)于原點(diǎn)的中心對稱點(diǎn)([A,B]與[B,A]看作一組).函數(shù)g(x)=
cos
π
2
x,x≤0
log4(x+1),x>0
關(guān)于原點(diǎn)的中心對稱點(diǎn)的組數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,如果兩點(diǎn)A(a,b),B(-a,-b)在函數(shù)y=f(x)的圖象上,那么稱[A,B]為函數(shù)f(x)的一組關(guān)于原點(diǎn)的中心對稱點(diǎn)([A,B]與[B,A]看作一組).函數(shù)g(x)=
cos
π
2
x  x≤0
log4(x+1),x>0
關(guān)于原點(diǎn)的中心對稱點(diǎn)的組數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,如果兩點(diǎn)A(a,b),B(-a,-b)在函數(shù)y=f(x)的圖象上,那么稱[A,B]為函數(shù)f(x)的一組關(guān)于原點(diǎn)的中心對稱點(diǎn)([A,B]與[B,A]看作一組).函數(shù)g(x)=
sin
π
2
x,  x≤0
log4(x+1),x>0
關(guān)于原點(diǎn)的中心對稱點(diǎn)的組數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•洛陽一模)在直角坐標(biāo)系中,如果不同的兩點(diǎn)A(a,b),B(-a,-b)在函數(shù)y=f(x)的圖象上,那么稱[A,B]為該函數(shù)的一組關(guān)于原點(diǎn)的中心對稱點(diǎn)([A,B]與[B,A]看作一組),函數(shù)f(x)=
sinx,x≤0
|lgx|,x>0
關(guān)于原點(diǎn)的中心對稱點(diǎn)的組數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,如果不同兩點(diǎn)A(a,b),B(-a,-b)都在函數(shù)y=h (x )的圖象上,那么稱[A,B]為函數(shù)h(x)的一組“友好點(diǎn)”([A,B]與[B,A]看作一組).已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x+2)=
2
f(x),且當(dāng)x∈[0,2]時(shí),f(x)=sin
π
2
x.則函數(shù)f(x)=
f(x),0<x≤8
-
-x
,-8≤x<0
的“友好點(diǎn)”的組數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊答案