科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=x2-4,設曲線y=f(x)在點(xn,f(xn))處的切線與x軸的交點為(xn+1,0)(n),其中為正實數(shù).
(Ⅰ)用表示xn+1;
(Ⅱ)若a1=4,記an=lg,證明數(shù)列{}成等比數(shù)列,并求數(shù)列{xn}的通項公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項和,證明Tn<3.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年廣東省高考沖刺強化訓練試卷三文科數(shù)學 題型:解答題
(本小題滿分14分)已知函數(shù),設曲線y=f(x)在點(xn,f(xn))處的切線與x軸的交點為(xn+1,0)(n ÎN *),x1=4.
(Ⅰ)用表示xn+1;
(Ⅱ)記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式;
(Ⅲ)若bn=xn-2,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年廣東省高考沖刺強化訓練試卷三文科數(shù)學 題型:解答題
(本小題滿分14分)已知函數(shù),設曲線y=f(x)在點(xn,f(xn))處的切線與x軸的交點為(xn+1,0)(n Î N *),x1=4.
(Ⅰ)用表示xn+1;
(Ⅱ)記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式;
(Ⅲ)若bn=xn-2,試比較與的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年安徽省皖南八校高三(上)第二次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com