設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(Ⅰ)求的值;
(Ⅱ)求的極值點(diǎn);
(Ⅲ)對(duì)定義域內(nèi)任意一個(gè),不等式是否恒成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由。
(Ⅰ);(Ⅱ)只有極大值點(diǎn),且極大值點(diǎn)為;(Ⅲ)見解析。
【解析】
試題分析:(Ⅰ)∵
∴...................1分
∵在點(diǎn)處的切線斜率為2
∴即......................2分
故..............................3分
(Ⅱ)∵()
得................4分
即
由可得,
當(dāng)時(shí),...................5分
當(dāng)時(shí),............................6分
列表可得:
+ |
0 |
— |
|
↗ |
|
↙ |
故只有極大值點(diǎn),且極大值點(diǎn)為..........................8分
(Ⅲ)令,得()............9分
∴
即..................10分
由可得,
當(dāng)時(shí),
當(dāng)時(shí),.........................11分
列表可得:
+ |
0 |
— |
|
↗ |
0 |
↙ |
由表可知的最大值為
即恒成立
故恒成立.......................12分
考點(diǎn):導(dǎo)數(shù)的幾何意義;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究函數(shù)的極值;利用導(dǎo)數(shù)研究函數(shù)的最值。
點(diǎn)評(píng):極值點(diǎn)的導(dǎo)數(shù)為零,但導(dǎo)數(shù)為零的點(diǎn)不一定是極值點(diǎn)。因此在求極值點(diǎn)的時(shí)候僅僅由=0得到的點(diǎn)不一定是極值點(diǎn),而應(yīng)該加以驗(yàn)證。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
π |
4 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林長(zhǎng)春實(shí)驗(yàn)中學(xué)高三上學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(1)求的值;
(2)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第七學(xué)段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題14分)設(shè)函數(shù),曲線過P(1,0),且在P點(diǎn)處的切斜線率為2.
(I)求a,b的值;
(II)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(三) 題型:解答題
設(shè)函數(shù),曲線過P(1,0),且在P點(diǎn)處的切斜線率為2.
(I)求a,b的值;
(II)證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com