已知函數(shù)f(x)=|1-
1
x
|, (x>0)

(1)當(dāng)0<a<b且f(a)=f(b)時(shí),求證:ab>1;
(2)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.
(1)f(a)=f(b)得|1-
1
a
|=|1-
1
b
|
,1-
1
a
=±(1-
1
b
)
,得a=b(舍)或
1
a
+
1
b
=2

2=
a+b
ab
2
ab
ab
=
2
ab
,∴
ab
≥1

∵a≠b,∴等號(hào)不可以成立,故ab>1…..…(5分)
(2)不存在.f(x)=
1-
1
x
 x≥1
1
x
-1 x<1
,
①當(dāng)a,b∈(0,1)時(shí),f(x)=
1
x
-1
在(0,1)上單調(diào)遞減,可得
f(a)=b
f(b)=a

1
a
-1=b
1
b
-1=a
,
1
a
-
1
b
=b-a
b=
1
a
,-1=0
矛盾
②當(dāng)a∈(0,1),b∈[1,+∞)時(shí),顯然1∈[a,b],而f(1)=0,則0∈[a,b]矛盾
③當(dāng)a,b∈[1,+∞),f(x)=1-
1
x
在(1,+∞)上單調(diào)遞增,可得
f(a)=a
f(b)=b
1-
1
a
=a
1-
1
b
=b
,a,b是方程1-
1
x
=x
的兩個(gè)根,此方程無(wú)解; …(11分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)
,
求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實(shí)數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案