【題目】已知函數(shù)f(x)=x2+alnx
(1)當a=﹣1時,求函數(shù)的單調(diào)區(qū)間和極值
(2)若f(x)在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍.
【答案】
(1)解:a=﹣1時:f(x)=x2﹣lnx,(x>0),
∴f′(x)=2x﹣ = ,
令f′(x)>0,解得:x> ,令f′(x)<0,解得:0<x< ,
∴f(x)在(0, )遞減,在( ,+∞)上單調(diào)遞增,
∴f(x)的極小值是f( )= (1+ln2)
(2)解:∵f′(x)=2x+ ,
若f(x)在[1,+∞)上是單調(diào)增函數(shù),
則:f′(1)=2+a≥0,
∴a≥﹣2
【解析】(1)先求出函數(shù)的導數(shù),得出f′(x),從而判斷函數(shù)的單調(diào)性和極值,(2)由f′(x)=2x+ ,且f(x)在[1,+∞)上是單調(diào)增函數(shù),解不等式從而求出a的范圍.
【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調(diào)性的相關知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)x、y滿足 ,目標函數(shù)z=x+ay.
(1)當a=﹣2時,求目標函數(shù)z的取值范圍;
(2)若使目標函數(shù)取得最小值的最優(yōu)解有無數(shù)個,求 的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對任意實數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當t∈[﹣1,3]時,求y=f(2t)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC內(nèi)角A,B,C的對邊分別是a,b,c,cos = ,且acosB+bcosA=2,則△ABC的面積的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結論中錯誤的是( )
A.f(x)是偶函數(shù)
B.函f(x)最小值為
C. 是函f(x)的一個周期
D.函f(x)在(0, )內(nèi)是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對100名五年級學生進行了問卷調(diào)查,得到如下2×2列聯(lián)表,平均每天喝500ml以上為常喝,體重超過50kg為肥胖.
不常喝 | 常喝 | 合計 | |
肥胖 | x | y | 50 |
不肥胖 | 40 | 10 | 50 |
合計 | A | B | 100 |
現(xiàn)從這100名兒童中隨機抽取1人,抽到不常喝碳酸飲料的學生的概率為
(1)求2×2列聯(lián)表中的數(shù)據(jù)x,y,A,B的值;
(2)根據(jù)列聯(lián)表中的數(shù)據(jù)繪制肥胖率的條形統(tǒng)計圖,并判斷常喝碳酸飲料是否影響肥胖?
(3)是否有99.9%的把握認為肥胖與常喝碳酸飲料有關?說明你的理由. 附:參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2011年,國際數(shù)學協(xié)會正式宣布,將每年的3月14日設為國際數(shù)學節(jié),來源是中國古代數(shù)學家祖沖之的圓周率.為慶祝該節(jié)日,某校舉辦的數(shù)學嘉年華活動中,設計了一個有獎闖關游戲,游戲分為兩個環(huán)節(jié). 第一環(huán)節(jié)“解鎖”:給定6個密碼,只有一個正確,參賽選手從6個密碼中任選一個輸入,每人最多可輸三次,若密碼正確,則解鎖成功,該選手進入第二個環(huán)節(jié),否則直接淘汰.
第二環(huán)節(jié)“闖關”:參賽選手按第一關、第二關、第三關的順序依次闖關,若闖關成功,分別獲得10個、20個、30個學豆的獎勵,游戲還規(guī)定,當選手闖過一關后,可以選擇帶走相應的學豆,結束游戲,也可以選擇繼續(xù)闖下一關,若有任何一關沒有闖關成功,則全部學豆歸零,游戲結束.設選手甲能闖過第一關、第二關、第三關的概率分別為 ,選手選擇繼續(xù)闖關的概率均為 ,且各關之間闖關成功與否互不影響.
(1)求某參賽選手能進入第二環(huán)節(jié)的概率;
(2)設選手甲在第二環(huán)節(jié)中所得學豆總數(shù)為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將三項式(x2+x+1)n展開,當n=0,1,2,3,…時,得到以下等式: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
…
觀察多項式系數(shù)之間的關系,可以仿照楊輝三角構造如圖所示的廣義楊輝三角形,其構造方法為:第0行為1,以下各行每個數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計為0)之和,第k行共有2k+1個數(shù).若在(1+ax)(x2+x+1)5的展開式中,x7項的系數(shù)為75,則實數(shù)a的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com