【題目】數(shù)列{bn}(bn>0)的首項為1,且前n項和Sn滿足Sn﹣Sn1= + (n≥2).
(1)求{bn}的通項公式;
(2)若數(shù)列{ }前n項和為Tn , 問Tn 的最小正整數(shù)n是多少?

【答案】
(1)解:∵數(shù)列{bn}(bn>0)的首項為1,前n項和Sn滿足Sn﹣Sn1= + (n≥2).

=1,∴數(shù)列 構(gòu)成一個首相為1公差為1的等差數(shù)列,

=1+(n﹣1)×1=n,∴Sn=n2

∴n≥2時,bn=Sn﹣Sn1=n2﹣(n﹣1)2=2n﹣1.(n=1時也成立).

∴bn=2n﹣1.


(2)解: = =

∴數(shù)列{ }前n項和Tn= +…+ = =

Tn 即: ,解得n>

滿足Tn 的最小正整數(shù)為112


【解析】(1)數(shù)列{bn}(bn>0)的首項為1,前n項和Sn滿足Sn﹣Sn1= + (n≥2).可得 =1,利用等差數(shù)列的通項公式可得Sn , 再利用遞推關(guān)系可得bn . (2) = = .利用“裂項求和”方法即可得出.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,圖象關(guān)于原點中心對稱且在定義域上為增函數(shù)的是(
A.
B.f(x)=2x﹣1
C.
D.f(x)=﹣x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值10,則f(2)等于(
A.11或18
B.11
C.18
D.17或18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +x.
(1)判斷并證明f(x)的奇偶性;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上為增函數(shù);
(3)求函數(shù)f(x)在區(qū)間[1,3]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)計劃派出名女生, 名男生去參加某項活動,若實數(shù), 滿足約束條件則該中學(xué)最多派__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=aex﹣x﹣1,a∈R.
(Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)當x∈(0,+∞)時,f(x)>0恒成立,求a的取值范圍;
(Ⅲ)求證:當x∈(0,+∞)時,ln

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足f(x)= ,且f(x)=f(x+2),g(x)= ,則方程g(x)=f(x)﹣g(x)在區(qū)間[﹣3,7]上的所有零點之和為(
A.12
B.11
C.10
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是橢圓 的長軸與短軸的一個端點, 分別是橢圓的左、右焦點, 橢圓上的一點, 的周長為.

(1)求橢圓的方程;

(2)若是圓上任一點,過點作橢圓的切線,切點分別為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為的半圓形鐵皮上截取一塊矩形材料ABCD(點A、B在直徑上,點C、D在半圓周上),并將其卷成一個以AD為母線的圓柱體罐子的側(cè)面(不計剪裁和拼接損耗),

1)若要求圓柱體罐子的側(cè)面積最大,應(yīng)如何截?

2)若要求圓柱體罐子的體積最大,應(yīng)如何截。

查看答案和解析>>

同步練習冊答案