試題分析:命題的否定和否命題的區(qū)別:對命題的否定只是否定命題的結(jié)論,而否命題,既否定假設(shè),又否定結(jié)論.
A選項對命題的否定是:存在
,使得
0;
B選項對命題的否定是:存在
,均有
1
0;
D選項則命題p與q也可能都是假命題。
故選C
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
原命題為“若
互為共軛復(fù)數(shù),則
”,關(guān)于逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是( )
A.真,假,真 | B.假,假,真 | C.真,真,假 | D.假,假,假 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知命題p:對?x∈R,?m∈R,使4
x+2
xm+1=0.若命題
p是假命題,則實數(shù)m的取值范圍是( )
A.[-2,2] | B.[2,+∞) |
C.(-∞,-2] | D.[-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知命題p:m∈R,且m+1≤0,命題q:?x∈R,x2+mx+1>0恒成立,若p∧q為假命題,則m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
下列結(jié)論:
①若命題p:?x
0∈R,tan x
0=2;命題q:?x∈R,x
2-x+
>0.則命題“p∧(
q)”是假命題;
②已知直線l
1:ax+3y-1=0,l
2:x+by+1=0,則l
1⊥l
2的充要條件是
=-3;
③“設(shè)a、b∈R,若ab≥2,則a
2+b
2>4”的否命題為:“設(shè)a、b∈R,若ab<2,則a
2+b
2≤4”.
其中正確結(jié)論的序號為________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知命題p:所有指數(shù)函數(shù)都是單調(diào)函數(shù),則綈p為______________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)
:
,
:關(guān)于
的不等式
的解集是空集,試確定實數(shù)
的取值范圍,使得
或
為真命題,
且
為假命題。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
“命題
為真命題”是“命題
為真命題”的( )
A.充分不必要條件 | B.必要不充分條件 |
C.充分必要條件 | D.既不充分也不必要條件 |
查看答案和解析>>