3.函數(shù)f(x)=4x-2x-1-1取最小值時(shí),自變量x的取值為-2.

分析 設(shè)2x=t(t>0),則y=t2-$\frac{1}{2}$t-1,由配方,可得函數(shù)的最小值及對(duì)應(yīng)的自變量x的值.

解答 解:函數(shù)f(x)=4x-2x-1-1,
設(shè)2x=t(t>0),
則y=t2-$\frac{1}{2}$t-1=(t-$\frac{1}{4}$)2-$\frac{17}{16}$,
當(dāng)t=$\frac{1}{4}$,即x=-2時(shí),取得最小值,且為-$\frac{17}{16}$.
故答案為:-2.

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用換元法和指數(shù)函數(shù)的值域,以及二次函數(shù)的最值求法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.計(jì)算:
(1)${(2\frac{3}{5})^0}+{2^{-4}}×{(2\frac{1}{4})^{-\frac{3}{2}}}-{0.01^{0.5}}$;
(2)(lg2)2+lg2•lg50+lg25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1的側(cè)棱與底面成60°角,側(cè)棱長(zhǎng)與底面邊長(zhǎng)均相等,側(cè)面B1C1CB⊥面ABC.
(1)求證:AC1⊥BC;
(2)求BA1與AC1所成的角;
(3)求CB1與平面AC1B1所成角的正弦值;
(4)求二面角C-AC1-B1的余弦值;
(5)若AB=2,求A1到平面AB1C1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知點(diǎn)(x,y)在映射f:A→B作用下的象是(x+y,x-y),x∈R,y∈R,則點(diǎn)(8,2)的原象
是(5,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=ax3+bx+1(ab≠0),若f(2015)=k,則f(-2015)=( 。
A.k-2B.2-kC.1-kD.-k-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}滿足a1=$\frac{3}{2}$,an+1=2-$\frac{1}{{a}_{n}}$.
(1)求$\frac{1}{{a}_{1}-1}$的值;
(2)證明:數(shù)列{$\frac{1}{{a}_{n}-1}$}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,ABCD與ADEF均為平行四邊形,M,N,G分別是AB,AD,EF的中點(diǎn).
(1)求證:BE∥平面DMF;
(2)求證:平面BDE∥平面MNG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=(x+2)n+(x-2)n,其中n=3${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,則f(x)的展開(kāi)式中x4的系數(shù)為120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在正六棱柱的各個(gè)面所在的平面中,有4對(duì)互相平行,與一個(gè)側(cè)面所在平面相交的有4個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案