15.如圖,四邊形ABCD是正方形,DE⊥平面ABCD,AF∥DE,AF=$\frac{1}{2}AD=\frac{1}{3}$ED=1.
(Ⅰ)求二面角E-AC-D的正切值;
(Ⅱ)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

分析 (Ⅰ)設(shè)AC∩BD=O,連結(jié)OE,推導(dǎo)出二面角E-AC-D的平面角為∠EOD,由此能求出二面角E-AC-D的正切值.
(Ⅱ)作MN∥ED,推導(dǎo)出AMNF是平行四邊形,從而AM∥FN,進(jìn)而得到AM∥平面BEF.

解答 (本小題滿分12分)
解:(Ⅰ)設(shè)AC∩BD=O,連結(jié)OE,
由AC⊥OD,AC⊥DE,OD∩DE=D,
得AC⊥OE,
∴二面角E-AC-D的平面角為∠EOD,
∵AF=$\frac{1}{2}AD=\frac{1}{3}$ED=1,
∴tan∠EOD=$\frac{3\sqrt{2}}{2}$,
∴二面角E-AC-D的正切值為$\frac{3\sqrt{2}}{2}$.
(Ⅱ)$BM=\frac{1}{3}BD$時(shí),AM∥平面BEF,理由如下:
作MN∥ED,則$MN\underline{\underline∥}\frac{1}{3}ED$,
∵AF∥DE,DE=3AF,∴$AF\underline{\underline∥}MN$,
∴AMNF是平行四邊形,
∴AM∥FN,
∵AM?平面BEF,F(xiàn)N?平面BEF,
∴AM∥平面BEF.

點(diǎn)評 本題考查二面角的正切值的求法,考查滿足線面平行的點(diǎn)的位置的確定,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B,C分別為坐標(biāo)軸上的三個(gè)點(diǎn),且OA=1,OB=3,OC=4.
(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以點(diǎn)A,B,C,P為頂點(diǎn)的四邊形為菱形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)畫出函數(shù)y=|x-2|的圖象,寫出函數(shù)的增區(qū)間和減區(qū)間;
(2)已知A={x|-2<x<-1或x>1},B={x|a≤x<b},A∪B={x|x>-2},A∩B={x|1<x<3},求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某地汽車站在6:00~6:10內(nèi)任何時(shí)刻發(fā)出第1班車,在6:10~6:20任何時(shí)刻發(fā)出第2班車,某人在6:00~6:20的任何時(shí)刻到達(dá)車站是等可能的,求此人乘坐前2班車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.投資者王先生第一天以5元/股的價(jià)格買進(jìn)100股某股票,第2天該股票的價(jià)格漲了5%,但王先生認(rèn)為它還會(huì)繼續(xù)漲,就沒有售出,到了第3天,該股票下跌了4%,王先生擔(dān)心它繼續(xù)下跌,把股票全部賣出了.如果不計(jì)交易的手續(xù)費(fèi)和 稅費(fèi),那么通過這次交易,王先生一共獲利( 。
A.5元B.4元C.1元D.4.5元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,以點(diǎn)(0,2)為圓心,且與直線mx-y-3m-1=0(m∈R),相切的所有圓中半徑最大的圓的標(biāo)準(zhǔn)方程為x2+(y-2)2=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)$f(x)=\sqrt{{x^0}-x}$的定義域是( 。
A.(-∞,1)B.(-∞,1]C.(-∞,0)∪(0,1)D.(-∞,0)∪(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=2sin($\frac{x}{2}$+$\frac{π}{6}$)
(1)若向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{x}{4}$,cos$\frac{x}{4}$),$\overrightarrow{n}$=(-cos$\frac{x}{4}$,sin$\frac{x}{4}$),且$\overrightarrow{m}$∥$\overrightarrow{n}$,求f(x)的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足($\sqrt{2}$a-c)cosB=bcosC,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}前n項(xiàng)和滿足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$  (n≥2),a1=1,則an=( 。
A.nB.2n-1C.n2D.2n2-1

查看答案和解析>>

同步練習(xí)冊答案