精英家教網(wǎng)已知函數(shù)f(x)=loga(2x+b-1)(a>0,a≠1)的圖象如圖所示,則a,b滿足的關(guān)系是( 。
A、0<a-1<b<1B、0<b<a-1<1C、0<b-1<a<1D、0<a-1<b-1<1
分析:利用對數(shù)函數(shù)和函數(shù)圖象平移的方法列出關(guān)于a,b的不等關(guān)系是解決本題的關(guān)鍵.利用好圖形中的標(biāo)注的(0,-1)點(diǎn).利用復(fù)合函數(shù)思想進(jìn)行單調(diào)性的判斷,進(jìn)而判斷出底數(shù)與1的大小關(guān)系.
解答:解:∵函數(shù)f(x)=loga(2x+b-1)是增函數(shù)且隨著x增大,2x+b-1增大,f(x)也增大.
∴a>1,∴0<
1
a
<1,
∵當(dāng)x=0時(shí),f(0)=logab<0,
∴0<b<1.
又∵f(0)=logab>-1=loga
1
a
,
∴b>
1
a
,
∴0<a-1<b<1.
故選A.
點(diǎn)評:本題考查對數(shù)函數(shù)的圖象性質(zhì),考查學(xué)生的識(shí)圖能力.考查學(xué)生的數(shù)形結(jié)合能力和等價(jià)轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案