已知(1-2x)7=a0+a1x+a2x2+…+a7x7,則a0=
1
1
,a1+a2+…+a7=
-2
-2
分析:先求得 a0=
C
0
7
=1,把x=1代入已知的等式求得a1+a2+…+a7 的值.
解答:解:a0=
C
0
7
=1,把x=1代入已知的等式可得-1=a0+a1+a2+…+a7 ,
∴a1+a2+…+a7=-2,
故答案為 1;-2.
點評:本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

2、已知(1-2x)7=a0+a1x+a2x2+…+a7x7,那么a1+a2+a3+a4+a5+a6+a7=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

10、已知(1-2x)7=a0+a1x+a2x2+…+a7x7,那么a0-a1+a2-a3+…-a7=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

17、已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求
(Ⅰ)a0+a1+…+a7的值
(Ⅱ)a0+a2+a4+a6及a1+a3+a5+a7的值;
(Ⅲ)各項二項式系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(1-2x)7=a0+a1x+a2x2+…a7x7,那么|a1|+|a2|+…|a7|=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知 (1-2x)7=a0+a1x+a2x2+…+a7x7;
求:(1)a0;
(2)a1+a2+…+a7;
(3)a1+a3+a5+a7

查看答案和解析>>

同步練習冊答案