如圖,四面體中,、分別是、的中點(diǎn),
(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值;
(Ⅲ)求點(diǎn)到平面的距離.
(Ⅰ)詳見解析;(Ⅱ);(Ⅲ).
解析試題分析:(1)由題意可知,為等腰三角形,是邊上的中線,所以,再由已知條件算出的三條邊長,由此根據(jù)勾股定理,可證,從而得證平面;(2)作于F,連AF,由(1)知, 故,所以 ,則 是二面角的平面角,利用平面幾何知識即可算出其正切值;(3)設(shè)點(diǎn)E到平面ACD的距離為因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/e/buiva1.png" style="vertical-align:middle;" />,所以,從而求出.也可以點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系,寫出各個點(diǎn)的坐標(biāo),利用利用空間向量方法,求解各個小題,詳見解析.
試題解析:(Ⅰ)證明:連結(jié)OC
在中,由已知可得而
即
平面
(Ⅱ)解: 作于F,連AF
由(1)知, 故
, 是二面角的平面角,
易知,.
即所求二面角的正切值為
(Ⅲ)解:設(shè)點(diǎn)E到平面ACD的距離為
在中,
而
點(diǎn)E到平面ACD的距離為
方法二:(Ⅰ)同方法一.
(Ⅱ)解:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,則
(Ⅲ)解:設(shè)平面ACD的法向量為則
令得是平面ACD的一個法向量,又
點(diǎn)E到平面ACD的距離.
考點(diǎn):本題考查的知識點(diǎn)是空間直線與平面垂直的判定,空間點(diǎn)到平面的距離,二面角的平面角,其中(I)的關(guān)鍵是熟練掌握空間線線垂直與線面垂直之間的轉(zhuǎn)化,(II)(III)的關(guān)鍵是建立空間坐標(biāo)系,利用向量法解決空間距離和夾角問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC—A1B1C1中, ,直線B1C與平面ABC成45°角。
(1)求證:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.
(I) 試判斷直線CD與平面PAD是否垂直,并簡述理由;
(II)求證:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點(diǎn),點(diǎn)E在棱BB1上運(yùn)動.
(Ⅰ)證明:AD⊥C1E;
(Ⅱ)當(dāng)異面直線AC,C1E 所成的角為60°時,求三棱錐C1-A1B1E的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在四棱錐中,底面是矩形,平面,、分別是、的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若與平面所成角為,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com