由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”。
(1)若函數(shù)f(x)=2確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項公式;
(2)對(1)中{bn},不等式對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍;
(3)設(shè)(λ為正整數(shù)),若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn}, 求數(shù)列{tn}前n項和Sn
解:(1)(n為正整數(shù)),

所以數(shù)列的反數(shù)列的通項公式(n為正整數(shù))。
(2) 對于(1)中,不等式化為,
,
,
 ∴數(shù)列單調(diào)遞增,
所以,,要使不等式恒成立,只要,
,

,
所以,使不等式對于任意正整數(shù)n恒成立的a的取值范圍是。
(3)設(shè)公共項為正整數(shù),
當(dāng)λ為奇數(shù)時,,
,
(表示的子數(shù)列),
所以,的前n項和;
當(dāng)λ為偶數(shù)時,,
,則,同樣有,,
所以,的前n項和。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項公式;
(2)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍;
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數(shù))
,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn},求數(shù)列{tn}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n

(3)已知正數(shù)數(shù)列{cn}的前n項之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),由函數(shù)y=f-1(x)確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若數(shù)列{bn}是函數(shù)f(x)=
x+1
2
確定數(shù)列{an}的反數(shù)列,試求數(shù)列{bn}的前n項和Sn
(2)若函數(shù)f(x)=2
x
確定數(shù)列{cn}的反數(shù)列為{dn},求{dn}的通項公式;
(3)對(2)題中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.

(1)已知函數(shù)f(x)=2的反函數(shù)為f-1(x)=(x≥0),則由函數(shù)f(x)=2確定的數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項公式;不等式++…+≥1-2a對任意的正整數(shù)n恒成立,求實數(shù)a的范圍;

(2)設(shè)函數(shù)y=3x確定的數(shù)列為{cn},{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn},求數(shù)列{tn}的前n項和Sn.

查看答案和解析>>

同步練習(xí)冊答案