A. | $\frac{3}{2}$ | B. | 3 | C. | $\sqrt{6}$ | D. | 6 |
分析 由B=$\frac{π}{2}$,利用勾股定理可求b2=a2+c2,由sin2B=2sinAsinC,利用正弦定理可得:b2=2ac,聯(lián)立可求a=c,進而利用三角形面積公式即可計算得解.
解答 解:在△ABC中,∵B=$\frac{π}{2}$,a=$\sqrt{6}$,
∴b2=a2+c2,
∵sin2B=2sinAsinC,
∴由正弦定理可得:b2=2ac,
∴a2+c2=2ac,可得:a=c=$\sqrt{6}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×\sqrt{6}×\sqrt{6}×1$=3.
故選:B.
點評 本題主要考查了勾股定理,正弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{10}{3}$ | B. | $\frac{20}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m∥n | B. | m⊥n | C. | m∥l | D. | n⊥l |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b>d | B. | a>b>c>d | C. | c>d>a>b | D. | c>a>b>d |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,1] | B. | [-1,2) | C. | [-1,+∞) | D. | (-2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com