(2008•湖北模擬)已知(2x+1)n的展開式中,二項式系數(shù)和為a,各項系數(shù)和為b,則
lim
n→∞
a3-3b2
2a3+b2
=( 。
分析:由題意可得,a=2n,令x=1可得,b=3n,然后把a,b的值分別代到所求的式子,然后分分母上同時除以9n可求.
解答:解:由題意可得,a=2n,令x=1可得,b=3n
lim
n→∞
a3-3b2
2a3+b2
=
lim
n→∞
23n-3•32n
2•23n+32n
=
lim
n→∞
8n-3•9n
2•8n+9n

=
lim
n→∞
(
8
9
)
n
-3
2•(
8
9
)
n
+1
=-3
故選:C
點評:本題主要考查了二項式系數(shù)的性質(zhì)及利用賦值求解各項系數(shù)的和,及
型的極限的求解,解題的關(guān)鍵是在所求的式子的分子、分母上同時除以9n
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)若等比數(shù)列的各項均為正數(shù),前n項之和為S,前n項之積為P,前n項倒數(shù)之和為M,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)已知f(x)=ax3+bx2+cx+d為奇函數(shù),且在點(2,f(2))處的切線方程為9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的圖象與x軸僅有一個公共點,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)某工廠去年某產(chǎn)品的年產(chǎn)量為100萬只,每只產(chǎn)品的銷售價為10元,固定成本為8元.今年,工廠第一次投入100萬元(科技成本),并計劃以后每年比上一年多投入100萬元(科技成本),預(yù)計產(chǎn)量年遞增10萬只,第n次投入后,每只產(chǎn)品的固定成本為g(n)=
k
n+1
(k>0,k為常數(shù),n∈Z且n≥0),若產(chǎn)品銷售價保持不變,第n次投入后的年利潤為f(n)萬元.
(1)求k的值,并求出f(n)的表達式;
(2)問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)已知向量
a
=(1,2),向量
b
=(x,-2),且
a
∥(
a
-
b
)
,則實數(shù)x等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)已知向量
a
=(2cosx,tan(x+α))
,
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
,
π
2
))
的終邊上一點P(-t,-t)(t≠0),記f(x)=
a
b

(1)求函數(shù)f(x)的最大值,最小正周期;
(2)作出函數(shù)f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

同步練習(xí)冊答案