(2014•蘭州一模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為Fl,F(xiàn)2,以|F1F2|為直徑的圓與雙曲線漸近線的一個(gè)交點(diǎn)為(3,4),則此雙曲線的方程為(  )
分析:根據(jù)題意,點(diǎn)(3,4)到原點(diǎn)的距離等于半焦距,可得a2+b2=25.由點(diǎn)(3,4)在雙曲線的漸近線上,得到
b
a
=
4
3
,兩式聯(lián)解得出a=3且b=4,即可得到所求雙曲線的方程.
解答:解:∵點(diǎn)(3,4)在以|F1F2|為直徑的圓上,
∴c=
32+42
=5,可得a2+b2=25…①
又∵點(diǎn)(3,4)在雙曲線的漸近線y=
b
a
x
上,
b
a
=
4
3
…②,
①②聯(lián)解,得a=3且b=4,可得雙曲線的方程
x2
9
-
y2
16
=1

故選:C
點(diǎn)評(píng):本題給出雙曲線滿足的條件,求雙曲線的方程,考查了雙曲線的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2014•蘭州一模)已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行于x軸.
(1)確定a與b的關(guān)系;
(2)若a≥0,試討論函數(shù)g(x)的單調(diào)性;
(3)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于兩點(diǎn)A(x1,y1),B(x2,y2),(x1<x2
證明:
1
x2
<k<
1
x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2014•蘭州一模)【選修4-1:幾何證明選講】
如圖,△ABC是直角三角形,∠ABC=90°,以AB為直徑的圓O交AB于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接OD交圓O于點(diǎn)M.
(1)求證:O、B、D、E四點(diǎn)共圓;
(2)求證:2DE2=DM•AC+DM•AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2014•蘭州一模)將函數(shù)y=sin(x+
π
6
)(x∈R)
的圖象上所有的點(diǎn)向左平移
π
4
個(gè)單位長(zhǎng)度,再把圖象上各點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,則所得的圖象的解析式為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2014•蘭州一模)設(shè)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦點(diǎn)分別為F1(-1,0)、F2(1,0),直線l:x=a2交x軸于點(diǎn)A,且
AF1
=2
AF2

(1)試求橢圓的方程;
(2)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(diǎn)(如圖所示),試求四邊形DMEN面積的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案