(本大題滿分12分)
給出定義在
上的三個函數(shù):
,已知
處取極值.
(I)確定函數(shù)
的單調(diào)性;
(II)求證:當
成立.
(III)把函數(shù)
的圖象向上平移6個單位得到函數(shù)
的圖象,試確定函數(shù)
的零點個數(shù),并說明理由。
(I)由題設(shè),
…………1分
由已知,
…………2分
于是
…………3分
由
所以
上是增函數(shù),在(0,1)上是減函數(shù)。 …………4分
(II)當
時,
…………5分
欲證
即證
…………6分
所以
上為增函數(shù)。 …………7分
從而當
…………8分
(III)由題設(shè),
則
即
…………9分
在(0,4)上是減函數(shù)。 …………10分
由圖可知,當
時,兩個函數(shù)圖象有2個交點,
故函數(shù)
有2個零點。 …………12分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)已知函數(shù)
的定義域為
.
(Ⅰ)求實數(shù)
的值;(Ⅱ)探究
是否是
上的單調(diào)函數(shù)?若是,請證明;若不是,請說明理由; (Ⅲ)求證:
,
(其中
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(1)若
在
處的切線與直線
垂直,求
的值
(2)證明:對于任意的
,都存在
,使得
成立
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)
m為實數(shù),函數(shù)
,
.
(1)若
≥4,求
m的取值范圍;
(2)當
m>0時,求證
在
上是單調(diào)遞增函數(shù);
(3)若
對于一切
,不等式
≥1恒成立,求實數(shù)
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知定義在R上的可導(dǎo)函數(shù)
的圖象如圖所示,則不等式
的解集為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在半徑為
的圓內(nèi),作內(nèi)接等腰三角形,當?shù)走吷细邽槎嗌贂r,它的面積最大?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
的圖象經(jīng)過點
,且在
處的切線方程是
(1) 求
的解析式;
(2) 點
是直線
上的動點,自點
作函數(shù)
的圖象的兩條切線
、
(點
、
為切點),求證直線
經(jīng)過一個定點,并求出定點的坐標。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若f(x)=x(x+1)(x+2)…..(x+n),則
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
的圖像如右圖所示(其中
是函數(shù)
的導(dǎo)函數(shù)),下面四個圖像中
的圖像大致是( )
查看答案和解析>>