如圖,矩形ABCD中,AB=3,BC=4.E,F(xiàn)分別在線段BC和AD上,EF//AB,將矩形ABEF沿EF折起.記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.
(1)求證:NC∥平面MFD;
(2)若EC=3,求證:ND⊥FC;
(3)求四面體NFEC體積的最大值.
(1)證明:由四邊形MNEF,EFDC都是矩形,得到MN∥EF∥CD,MN=EF=CD.
推出四邊形MNCD是平行四邊形,從而NC∥平面MFD.
(2)證明:連接ED,設(shè)ED∩FC=O.推出FC⊥NE.又EC=CD,所以四邊形ECDF為正方形,結(jié)合 FC⊥ED.推出FC⊥平面NED,所以ND⊥FC.(3)x=2時,四面體NFEC的體積有最大值2.
【解析】
試題分析:(1)證明:因為四邊形MNEF,EFDC都是矩形,所以MN∥EF∥CD,MN=EF=CD.
所以四邊形MNCD是平行四邊形,所以NC∥MD,因為NC?平面MFD,所以NC∥平面MFD. 4分
(2)證明:連接ED,設(shè)ED∩FC=O.因為平面MNEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF, 5分
所以FC⊥NE.又EC=CD,所以四邊形ECDF為正方形,所以 FC⊥ED.所以FC⊥平面NED,
所以ND⊥FC. 8分
(3)解:設(shè)NE=,則EC=4-,其中0<x<4.由(1)得NE⊥平面FEC,所以四面體NFEC的體積為,所以.
當(dāng)且僅當(dāng),即x=2時,四面體NFEC的體積有最大值2.
考點:本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,幾何體體積計算,均值定理的應(yīng)用。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,(1)(2)小題,將立體問題轉(zhuǎn)化成平面問題,這也是解決立體幾何問題的一個基本思路。(3)利用函數(shù)思想,構(gòu)建體積函數(shù)表達(dá)式,應(yīng)用均值定理,求得體積的最大值。
科目:高中數(shù)學(xué) 來源: 題型:
8
| ||
3 |
2π |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AE |
AF |
9 |
2 |
9 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2
| ||||
12 |
2
| ||||
12 |
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
PQ |
QD |
BP |
QD |
| ||
10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com