(本小題滿分14分)
已知函數(shù),
(1) 求函數(shù)的最小正周期及取得最小值的x的集合;
(2) 求函數(shù)的單調(diào)遞增區(qū)間.
(3)求在處的切線方程.
(1)最小正周期為 ,函數(shù)有最小值 ;
(2)函數(shù)的單調(diào)遞增區(qū)間為 ;
(3)。
解析(1)利用二倍角公式,兩角和的正弦公式化簡(jiǎn)函數(shù)為2cos(2x+),然后求函數(shù)f(x)的最小正周期;
(2)根據(jù)正弦函數(shù)的值域,直接求出函數(shù)f(x)的最小值及取得最小值時(shí)x的取值集合;
(3)利用正弦函數(shù)的單調(diào)性,直接求出函數(shù)f(x)的單調(diào)遞增區(qū)間.
(4)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/a/xgwac3.png" style="vertical-align:middle;" />,那么,得到斜率,然后點(diǎn)斜式得到切線方程。
(1)∵f(x)= 2cos2x-2sinxcosx-=(cos2x+1)-sin2x- …………2分
=2cos(2x+) ………………4分
最小正周期為 ………………5分
當(dāng)時(shí),即函數(shù)有最小值 …………7分
(2) ………………8分
函數(shù)的單調(diào)遞增區(qū)間為 ………………10分
(3)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/a/xgwac3.png" style="vertical-align:middle;" />……………11分
所以 ……………12分
而
從而在處的切線方程為
即……………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知,設(shè)函數(shù)
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知是函數(shù)圖象的一條對(duì)稱軸.
(Ⅰ)求的值;
(Ⅱ)作出函數(shù)在上的圖象簡(jiǎn)圖(不要求書寫作圖過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知,設(shè)= (1).求的最小正周期和單調(diào)遞減區(qū)間;
(2)設(shè)關(guān)于的方程=在有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(Ⅰ)用“五點(diǎn)法”在所給的直角坐標(biāo)系中畫出函數(shù)的圖像.
(Ⅱ)寫出的圖象是由的圖象經(jīng)過怎樣的變換得到的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)上是增函數(shù),,
(1)當(dāng)時(shí),求的值;
(2)求的最值以及取最值時(shí)x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)設(shè)函數(shù).
(1)求函數(shù)的最小正周期.
(2)當(dāng)時(shí),的最大值為2,求的值,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com