【題目】某市擬定2016年城市建設(shè)A,B,C三項(xiàng)重點(diǎn)工程,該市一大型城建公司準(zhǔn)備參加這三個(gè)工程的競(jìng)標(biāo),假設(shè)這三個(gè)工程競(jìng)標(biāo)成功與否相互獨(dú)立,該公司對(duì)A,B,C三項(xiàng)重點(diǎn)工程競(jìng)標(biāo)成功的概率分別為a,b, (a>b),已知三項(xiàng)工程都競(jìng)標(biāo)成功的概率為 ,至少有一項(xiàng)工程競(jìng)標(biāo)成功的概率為 .
(1)求a與b的值;
(2)公司準(zhǔn)備對(duì)該公司參加A,B,C三個(gè)項(xiàng)目的競(jìng)標(biāo)團(tuán)隊(duì)進(jìn)行獎(jiǎng)勵(lì),A項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)2萬(wàn)元,B項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)4萬(wàn)元,C項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)6萬(wàn)元,求競(jìng)標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額的分布列與數(shù)學(xué)期望.
【答案】
(1)解:由題意得 ,
由a>b,解得a= ,b=
(2)解:由題意,令競(jìng)標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額為隨機(jī)變量X,則X的值可以為0,2,4,6,8,10,
P(X=0)= ,
P(X=2)= = ,
P(X=4)= = ,
P(X=6)= = ,
P(X=8)= = ,
P(X=10)= = ,
P(X=12)= = ,
∴X的分布列為:
X | 0 | 2 | 4 | 6 | 8 | 10 | 12 |
P |
E(X)= + = .
【解析】(1)由題意利用相互獨(dú)立事件概率乘法公式和對(duì)立事件概率計(jì)算公式列出方程組,能求出a與b的值.(2)由題意,令競(jìng)標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額為隨機(jī)變量X,則X的值可以為0,2,4,6,8,10,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=a2lnx+ax(a≠0),g(x)= 2tdt,F(xiàn)(x)=g(x)﹣f(x).
(1)試討論F(x)的單調(diào)性;
(2)當(dāng)a>0時(shí),﹣e2≤F(x)≤1﹣e在x∈[1,e]恒成立,求實(shí)數(shù)a的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=xex(e為自然對(duì)數(shù)的底數(shù)),g(x)=(x+1)2 .
(I)記 ,討論函F(x)單調(diào)性;
(II)令G(x)=af(x)+g(x)(a∈R),若函數(shù)G(x)有兩個(gè)零點(diǎn).
(i)求參數(shù)a的取值范圍;
(ii)設(shè)x1 , x2是G(x)的兩個(gè)零點(diǎn),證明x1+x2+2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,CA=CB=AA1 , ∠BAA1=∠BAC=60°,點(diǎn)O是線段AB的中點(diǎn). (Ⅰ)證明:BC1∥平面OA1C;
(Ⅱ)若AB=2,A1C= ,求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.函數(shù)y=sinx,x∈[0,2π]是奇函數(shù)
B.函數(shù)y=2sin( ﹣2x)在區(qū)間[﹣ ]上單調(diào)遞減
C.函數(shù)y=2sin( -2x)﹣cos( +2x)(x∈R)的一條對(duì)稱軸方程是x=
D.函數(shù)y=sinπx?cosπx的最小正周期為2,且它的最大值為1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正三角形△ABC內(nèi)任取一點(diǎn)P,則點(diǎn)P到A,B,C的距離都大于該三角形邊長(zhǎng)一半的概率為( )
A.1﹣
B.1﹣
C.1﹣
D.1﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD= AD,AE⊥PC于點(diǎn)E,EF∥CD,交PD于點(diǎn)F (Ⅰ)證明:平面ADE⊥平面PBC
(Ⅱ)求二面角D﹣AE﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,點(diǎn)(2,0)在橢圓C上. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P(1,0)的直線(不與坐標(biāo)軸垂直)與橢圓交于A、B兩點(diǎn),設(shè)點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為B'.直線AB'與x軸的交點(diǎn)Q是否為定點(diǎn)?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com