函數(shù)f(n)=k(其中n∈N*),k是
2
的小數(shù)點(diǎn)后第n位數(shù),
2
=1.41421356237…
,則f{f[f(8)]}的值等于(  )
A.1B.2C.4D.6
由題意得f(8)=6
所以f[f(8)]=f(6)=3
所以f{f[f(8)]}=f(3)=4
所以f{f[f(8)]}的值等于4.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx(a≠0)
(I)若a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(II)若a=2,b=1,若函數(shù)k=g(x)-2f(x)-x2在[1,3]上恰有兩個不同零點(diǎn),求實(shí)數(shù)k的取值范圍;
(III)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于P,Q兩點(diǎn),過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于M、N兩點(diǎn),問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,其導(dǎo)函數(shù)為f′(x),令φ(x)=f′(x).
(1)設(shè)g(x)=f(x+a)+φ(x+a),求函數(shù)g(x)的極值;
(2)設(shè)Sn=
n
k=1
φ(1+
k
n
),Tn=
n
k=1
φ(1+
k-1
n
),n∈N*

(i)求證:
Sn
n
<ln2
;
(ii)是否存在正整數(shù)n0,使得當(dāng)n>n0時,都有0<
Sn+Tn
2n
-ln2<
1
8040
成立?若存在,求出一個滿足條件的
n0的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2
(Ⅰ)若函數(shù)g(x)=f(x)-ax在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,若a>1,h(x)=e3x-3aexx∈[0,ln2],求h(x)的極小值;
(Ⅲ)設(shè)F(x)=2f(x)-3x2-kx(k∈R),若函數(shù)F(x)存在兩個零點(diǎn)m,n(0<m<n),且2x0=m+n.問:函數(shù)F(x)在點(diǎn)(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),其圖象均在x軸的上方,對任意的m、n∈[0,+∞),都有f(m•n)=[f(m)]n,且f(2)=4,又當(dāng)x≥0時,其導(dǎo)函數(shù)f′(x)>0恒成立.
(Ⅰ)求F(0)、f(-1)的值;
(Ⅱ)解關(guān)于x的不等式:[f(
kx+2
2
x2+4
)]2≥2
,其中k∈(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)已知函數(shù)f(x)=2ln(2x)+x2
(I)若函數(shù)g(x)=f(x)+ax在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)設(shè)h(x)=2f(x)-3x2-kx(k∈R),若h(x)存在兩個零點(diǎn)m,n且2x0=m+n,證明:函數(shù)h(x)在(x0,h(x0))處的切線不可能平行于x軸.

查看答案和解析>>

同步練習(xí)冊答案