在△ABC中,∠A=60°,BC=,則AC+AB的最大值為   
【答案】分析:本題考查的知識(shí)點(diǎn)是余弦定理及基本不等式,由已知△ABC中,∠A=60°,BC=,我們結(jié)合余弦定理得到AB2+AC2=AB•AC+3,再由基本不等式我們可以將式子變形為一個(gè)關(guān)于AB+AC的不等式,解不等式即可得到答案.
解答:解:由余弦定理得:
cosA=cos60°==
即AB2+AC2=AB•AC+3
即AB2+AC2+2AB•AC=3AB•AC+3
即(AB+AC)2=3AB•AC+3≤+3
∴即(AB+AC)2≤12
∴AB+AC≤2
故則AC+AB的最大值為2

故答案為:2
點(diǎn)評(píng):在解三角形時(shí),正弦定理和余弦定理是最常用的方法,正弦定理多用于邊角互化,使用時(shí)要注意一般是等式兩邊是關(guān)于三邊的齊次式.而余弦定理在使用時(shí)一般要求兩邊有平方和的形式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂一模)已知函數(shù)f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•煙臺(tái)二模)在△ABC中,a、b、c為角A、B、C所對(duì)的三邊.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,設(shè)內(nèi)角B為x,周長(zhǎng)為y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,三邊a、b、c成等差數(shù)列,且B=
π
4
,則(cosA一cosC)2的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中角A、B、C的對(duì)邊分別為a、b、c設(shè)向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
,
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,已知a=2,b=
7
,∠B=
π
3
,則△ABC的面積為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案