分析 (1)將a的值代入f(x)得到關(guān)于x的不等式,解出即可;
(2)根據(jù)條件得到f(t)-f(t+1)≤1,恒成立,利用換元法進行轉(zhuǎn)化,結(jié)合對勾函數(shù)的單調(diào)性進行求解即可.
解答 解:(1)a=-5時,f(x)=log2($\frac{1}{x}$-5),
令f(x)>0,即$\frac{1}{x}$-5>1,0<x<$\frac{1}{6}$,
故不等式的解集是(0,$\frac{1}{6}$);
(2)函數(shù)f(x)在區(qū)間[t,t+1]上單調(diào)遞減,
由題意得f(t)-f(t+1)≤1,
即log2($\frac{1}{t}$+a)-log2( $\frac{1}{t+1}$+a)≤1,
即$\frac{1}{t}$+a≤2( $\frac{1}{t+1}$+a),即a≥$\frac{1}{t}$-$\frac{2}{t+1}$=$\frac{1-t}{t(t+1)}$,
設(shè)1-t=r,則0≤r≤$\frac{1}{2}$,$\frac{1-t}{t(t+1)}$=$\frac{r}{(1-r)(2-r)}$=$\frac{r}{{r}^{2}-3r+2}$,
當r=0時,$\frac{r}{{r}^{2}-3r+2}$=0,
當0<r≤$\frac{1}{2}$時,$\frac{r}{{r}^{2}-3r+2}$=$\frac{1}{r+\frac{2}{r}-3}$,
∵y=r+$\frac{2}{r}$在(0,$\sqrt{2}$)上遞減,
∴r+$\frac{2}{r}$≥$\frac{1}{2}$+4=$\frac{9}{2}$,
∴$\frac{r}{{r}^{2}-3r+2}$=$\frac{1}{r+\frac{2}{r}-3}$≤$\frac{1}{\frac{9}{2}-3}$=$\frac{2}{3}$,
∴實數(shù)a的取值范圍是a≥$\frac{2}{3}$.
點評 本題主要考查函數(shù)最值的求解,以及對數(shù)不等式的應(yīng)用,利用換元法結(jié)合對勾函數(shù)的單調(diào)性是解決本題的關(guān)鍵.綜合性較強,難度較大.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x<2} | B. | {x|x<0} | C. | {x|0<x≤2} | D. | {x|x>2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com