分析 (Ⅰ)運(yùn)用極坐標(biāo)和直角坐標(biāo)的關(guān)系:x2+y2=ρ2,可得曲線C的方程;由直線的參數(shù)方程$\left\{\begin{array}{l}{x={x}_{0}+tcosα}\\{y={y}_{0}+tsinα}\end{array}\right.$(t為參數(shù),α為傾斜角),可得直線的參數(shù)方程;
(Ⅱ)由題意可得$\left\{\begin{array}{l}{x=x′}\\{y=2y′}\end{array}\right.$代入C得曲線C′的方程,將直線l的參數(shù)方程代入C′的方程,整理后運(yùn)用韋達(dá)定理和參數(shù)的幾何意義,可得|AB|=|t1-t2|,計(jì)算即可得到所求值.
解答 解:(Ⅰ)由ρ=2得ρ2=4,可得曲線C的直角坐標(biāo)方程:x2+y2=4;
直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=1+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t為參數(shù))
即$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù));
(Ⅱ)由已知得:$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=x′}\\{y=2y′}\end{array}\right.$代入C得:x′2+4y′2=4,
∴曲線C′的方程為:$\frac{{x}^{2}}{4}$+y2=1,
將直線l的參數(shù)方程代入C′的方程且整理得:$\frac{7}{4}$t2+$\sqrt{3}$t-3=0,
∴$\left\{\begin{array}{l}{{t}_{1}+{t}_{2}=-\frac{4\sqrt{3}}{7}}\\{{t}_{1}{t}_{2}=-\frac{12}{7}}\end{array}\right.$,
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{\frac{48}{49}+\frac{48}{7}}$=$\frac{8\sqrt{6}}{7}$.
點(diǎn)評 本題考查極坐標(biāo)方程和直角坐標(biāo)方程的互化,直線的參數(shù)方程的運(yùn)用,注意運(yùn)用韋達(dá)定理和弦長公式,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,e${\;}^{\frac{1}{e}}}$) | B. | (1,e] | C. | (1,e2) | D. | (e${\;}^{\frac{1}{e}}}$,e2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
經(jīng)濟(jì)損失不超過 4000元 | 經(jīng)濟(jì)損失超過 4000元 | 合計(jì) | |
捐款超過 500元 | 30 | ||
捐款不超 過500元 | 6 | ||
合計(jì) |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com