一個幾何體的三視圖如圖所示.
(Ⅰ)畫出這個幾何體的直觀圖(不要求寫畫法);
(Ⅱ)求這個幾何體的表面積;
(Ⅲ)設(shè)異面直線AA'與BC'所成的角為θ,求cosθ.
分析:(Ⅰ)根據(jù)幾何體的三視圖判斷該幾何體的形狀,就可畫出直觀圖.
(Ⅱ)由幾何體的三視圖可判斷這個幾何體是直三棱柱,所以體積是底面積乘高.根據(jù)三視圖中所給數(shù)據(jù),就可求出底面三角形的面積和高,進(jìn)而求出體積.
(Ⅲ)因?yàn)锳A'∥BB',所以AA'與BC'所成的角是∠B'BC',然后在三角形BB'C'中計算此角的余弦值即可
解答:解:(Ⅰ)這個幾何體的直觀圖如圖所示
(Ⅱ)這個幾何體是直三棱柱.
由于底面△ABC的高為1,所以AC=BC=
12+12
=
2

BB′=CC′=AA′=3
故所求全面積S=2S△ABC+2SBB'C'C+SABB′A′=
1
2
×2×1+3×2+2×3×
2
=8+6
2
(cm2
(Ⅲ)因?yàn)锳A'∥BB',所以AA'與BC'所成的角是∠B'BC'.
在Rt△BB'C'中,BC′=
BB′2+B′C′2
=
32+22
=
13

cosθ=
BB′
BC′
=
3
13
=
3
13
13
點(diǎn)評:本題考察了三視圖、直觀圖的特點(diǎn)及其畫法,直三棱柱體積的計算,空間線線角的求法,需要有較強(qiáng)的空間想象力
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)一個幾何體的三視圖如圖所示,則這個幾何體的表面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為
30
30
m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的表面積為
3
+1+
7
3
+1+
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•河?xùn)|區(qū)一模)一個幾何體的三視圖如圖所示,則該幾何體(不考慮接觸點(diǎn))的表面積為
18+2
3
18+2
3

查看答案和解析>>

同步練習(xí)冊答案