精英家教網 > 高中數學 > 題目詳情
2.若(x2+$\frac{1}{x}$)n的二項展開式中,所以二項式系數之和為64,則n=6;該展開式中的常數項為15(用數字作答).

分析 由題意可得得2n=64,求得n=6.在(x2+$\frac{1}{x}$)n展開式的通項公式中,令x的冪指數等于零,求得r的值,即可求得
展開式中的常數項

解答 解:由 (x2+$\frac{1}{x}$)n展開式中的二項式系數和為64,可得2n=64,∴n=6.
由于(x2+$\frac{1}{x}$)n=(x${\;}^{2}+\frac{1}{x}$)6,展開式的通項公式為 Tr+1=${∁}_{6}^{r}$•x12-2r•x-r=${∁}_{6}^{r}$•x12-3r,
令12-3r=0,r=4,故該展開式中的常數項為 ${∁}_{6}^{4}$=${∁}_{6}^{2}$=15,
故答案為 6,15.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數,二項式系數的性質,屬于中檔題

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

12.設f(x)=a-$\frac{2}{{{2^x}+1}}$,x∈R,(其中a為常數).
(1)若f(x)為奇函數,求a的值;
(2)若不等式f(x)+a>0恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.經過點(-1,3)且平行于y軸的直線方程為x=-1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.設Sn,Tn分別是等差數列{an},{bn}的前n項和,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{n}{2n+1}$(n∈N*),則$\frac{{a}_{6}}{_{6}}$=( 。
A.$\frac{5}{13}$B.$\frac{9}{19}$C.$\frac{11}{23}$D.$\frac{9}{23}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.i是虛數單位,則復數$\frac{5i}{2-i}$的虛部為( 。
A.2iB.-2C.2D.-2i

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是( 。
A.(x-2)2+(y-1)2=1B.(x+2)2+(y-1)2=1C.(x-2)2+(y+1)2=1D.(x-1)2+(y+2)2=1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.已知圓C:x2+y2=4,直線l:y=x+b,若圓C上恰有4個點到直線l的距離都等于1,則b的取值范圍是$-\sqrt{2}<b<\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.下列說法:
①若f(x)=ax2+(2a+b)x+2(其中x∈[-1,a])是偶函數,則實數b=-2;
②f(x)=$\sqrt{2016-{x^2}}$+$\sqrt{{x^2}-2016}$既是奇函數又是偶函數;
③若f(x+2)=$\frac{1}{f(x)}$,當x∈(0,2)時,f(x)=2x,則f(2015)=2;
④已知f(x)是定義在R上的不恒為零的函數,且對任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數.其中所有正確命題的序號是①②④.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.在銳角三角形ABC中,內角A,B,C所對的邊分別為a,b,c,且2csinA=$\sqrt{3}$a.
(1)求角C的大小;
(2)若c=2,a2+b2=6,求△ABC的面積.

查看答案和解析>>

同步練習冊答案