已知函數(shù),點為一定點,直線分別與函數(shù)的圖象和軸交于點,,記的面積為.
(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時, 若,使得, 求實數(shù)的取值范圍.

(I) 增區(qū)間 ,減區(qū)間:; (II)  .

解析試題分析:(I) 先表示出 的解析式,應(yīng)用導(dǎo)數(shù)求解擔(dān)單調(diào)區(qū)間;(II)轉(zhuǎn)化為使上的最大值大于等于e即可.
試題解析:
(I) 因為,其中                         2分
當(dāng),,其中
當(dāng)時,,,
所以,所以上遞增,                       4分
當(dāng)時,,
, 解得,所以上遞增
, 解得,所以上遞減      7分
綜上,的單調(diào)遞增區(qū)間為,
的單調(diào)遞減區(qū)間為                                                       
(II)因為,其中
當(dāng),時,
因為,使得,所以上的最大值一定大于等于
,令,得                           8分
當(dāng)時,即
成立,單調(diào)遞增
所以當(dāng)時,取得最大值  
 ,解得   ,
所以                                                           10分  
當(dāng)時,即
成立,單調(diào)遞增
成立,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)().
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,取得極值.
① 若,求函數(shù)上的最小值;
② 求證:對任意,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)
(Ⅰ)若,討論的單調(diào)性;
(Ⅱ)時,有極值,證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(Ⅰ)若處的切線垂直于直線,求該點的切線方程,并求此時函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(Ⅰ)求的極值;
(Ⅱ)當(dāng)時,若不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的導(dǎo)函數(shù),且,設(shè),

(Ⅰ)討論在區(qū)間上的單調(diào)性;
(Ⅱ)求證:
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2) 當(dāng)時,函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍.
(3) 求證:,(其中,是自然對數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

規(guī)定其中為正整數(shù),且=1,這是排列數(shù)(是正整數(shù),)的一種推廣.
(Ⅰ) 求的值;
(Ⅱ)排列數(shù)的兩個性質(zhì):①,②(其中m,n是正整數(shù)).是否都能推廣到(,是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;
(Ⅲ)已知函數(shù),試討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(為非零常數(shù)).
(Ⅰ)當(dāng)時,求函數(shù)的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)對于增區(qū)間內(nèi)的三個實數(shù)(其中),
證明:.

查看答案和解析>>

同步練習(xí)冊答案