若α∈(
π
2
,π),且3cos2α=sin(
π
4
-α),則sin2α的值為( 。
A、
1
18
B、-
1
18
C、
17
18
D、-
17
18
考點:二倍角的余弦,二倍角的正弦
專題:三角函數(shù)的求值
分析:由條件可得3(cos2α-sin2α)=
2
2
cosα-
2
2
sinα,化簡求得cosα+sinα=
2
6
,再平方即可求得sin2α的值.
解答: 解:∵α∈(
π
2
,π),3cos2α=sin(
π
4
-α),
∴3(cos2α-sin2α)=
2
2
cosα-
2
2
sinα,
即3(cosα+sinα)•(cosα-sinα)=
2
2
(cosα-sinα),
∴cosα+sinα=
2
6
,或cosα-sinα=0(不合題意,舍去),
∴1+sin2α=
1
18
,∴sin2α=-
17
18

故選:D.
點評:本題主要考查兩角和差的正弦公式、二倍角公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于平面直角坐標系內(nèi)任意兩點A(x1,y1),B(x2,y2),定義它們之間的一種“折線距離”:d(A,B)=|x2-x1|+|y2-y1|.則下列命題正確的是
 
.(寫出所有正確命題的序號)
①若A(-1,3),B(1,0),則d(A,B)=5;
②若點C在線段AB上,則d(A,C)+d(C,B)=d(A,B);
③在△ABC中,一定有d(A,C)+d(C,B)>d(A,B);
④若A為定點,B為動點,且滿足d(A,B)=1,則B點的軌跡是一個圓;
⑤若A為坐標原點,B在直線2x+y-2
5
=0上,則d(A,B)最小值為
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,m),
b
=(m,2),若
a
b
,則實數(shù)m的值為(  )
A、-
2
B、
2
C、±
2
D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

同時具有性質(zhì)“(1)最小正周期是π;(2)圖象關于直線x=
π
6
對稱;(3)在[
π
6
,
π
3
]上是減函數(shù)”的一個函數(shù)可以是( 。
A、y=sin(
x
2
+
12
B、y=sin(2x-
π
3
C、y=cos(2x+
3
D、y=sin(2x+
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若某程序框圖如圖所示,則該程序運行后輸出的值是( 。
A、
8
9
B、
9
10
C、
10
11
D、
11
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為銳角,且tan(π-α)+3=0,則sinα的值是( 。
A、
1
3
B、
3
10
10
C、
3
7
7
D、
3
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+ax+
a+1
x
-1

(1)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)當-
1
2
≤a≤0
時,討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3
(x∈R,0≤θ≤π)是偶函數(shù).
(Ⅰ)求θ和f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所對的邊長分別為a,b,c,a=5,b=3,f(C)=-1,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),其短軸長為2,長半軸長a=
3
0
1dx,直線l與x軸正半軸和y軸分別交于點Q、P,與橢圓分別交于點M,N各點均不重合且滿足
PM
1
MQ
,
PN
2
NQ

(Ⅰ)求橢圓的標準方程;
(Ⅱ)求證:λ12=-3是直線l過定點(1,0)的充分條件.

查看答案和解析>>

同步練習冊答案