函數(shù)y=tan4x的最小正周期T=
 
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)函數(shù)y=Atan(ωx+φ)的周期為
π
ω
,可得結(jié)論.
解答: 解:函數(shù)y=tan4x的最小正周期T=
π
4
,
故答案為:
π
4
點評:本題主要考查函數(shù)y=Atan(ωx+φ)的周期性,利用了函數(shù)y=Atan(ωx+φ)的周期為
π
ω
,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,0),B(-5,0),則線段AB的垂直平分線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,滿足S3=S10,且a1>0,Sn是其前n項和,若Sn取得最大值,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖是一個空間幾何體的三視圖,則該幾何體的外接球的體積為(  )
A、6π
B、
6
π
C、3π
D、
8
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin2x+2sinxcosx-1(x∈R).
(1)求函數(shù)f(x)的周期和單調(diào)減區(qū)間;
(2)若f(
A
2
+
π
8
)=
3
2
5
,且A∈(
π
2
,π),求cos2A和tan2A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2x+sinx-cosx的導(dǎo)數(shù)為f′(x),則f′(0)等于(  )
A、2B、ln2+1
C、ln2-1D、ln2+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=40.1,b=log30.1,c=0.50.1,則( 。
A、a>b>c
B、a>c>b
C、b>a>c
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x2+1)的值域為{0,1,2},則滿足這樣條件的函數(shù)的個數(shù)為(  )
A、8B、5C、9D、27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知Sn+1=3Sn+2,a1=2,求{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案