已知函數(shù)f(x)=
2x-1
2x+1
,則不等式f(x-2)+f(x2-4)<0的解集為( 。
分析:本題要先判出f(x)為奇函數(shù)和增函數(shù),進而把抽象不等式轉化為關于x的一元二次不等式.
解答:解:由題意可知f(x)的定義域為R.
f(x)=
2x-1
2x+1

∴f(-x)+f(x)=
2-x-1
2-x+1
+
2x-1
2x+1

=
1-2x
1+2x
+
2x-1
2x+1
=0,即f(-x)=-f(x),∴f(x)為奇函數(shù).
又f(x)=
2x-1
2x+1
=
2x+1-2
2x+1
=1-
2
2x+1
,由復合函數(shù)的單調性可得f(x)為增函數(shù),
∴f(x-2)+f(x2-4)<0可化為f(x-2)<-f(x2-4)
即f(x-2)<f(4-x2),可得x-2<4-x2,
即x2+x-6<0,解得-3<x<2,
故選D
點評:本題為函數(shù)的性質與不等式解法的結合,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數(shù)x均成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當x=
3
3
時,函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習冊答案