已知,是否存在n的整式g(n),使得等式a1+a2+…+an-1=g(n)(an1)對于大于1的一切正整數(shù)n都成立?并證明你的結(jié)論.

答案:
解析:

  解:假設(shè)存在,

  令,求得,令,求得,令,求得,

  由此猜想:,下面用數(shù)學(xué)歸納法證明:對一切大于1的正整數(shù)都成立.(略)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f (x)是定義在R上的不恒為零的函數(shù),且對于任意的a、b∈R都滿足f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判斷f (x)的奇偶性,并證明你的結(jié)論;
(3)若f(
1
2
)=-
1
2
,令bn=
2n
f(2n)
,Sn
表示數(shù)列{bn}的前n項(xiàng)和.試問:是否存在關(guān)于n的整式g (n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g (n)對于一切不小于2的自然數(shù)n恒成立?若存在,寫出g(n)的解析式,并加以證明;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:044

已知an(n∈N*),是否存在n的整式q(n),使得等式a1+a2+…+an-1=q(n)(an-1)對于大于1的一切自然數(shù)n都成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(選修2-2) 2009-2010學(xué)年 第38期 總第194期 北師大課標(biāo) 題型:044

已知an=1++…+(n∈N+),問:是否存在n的整式q(n),使得等式a1+a2+…+an-1=q(n)(an-1)對大于1的一切自然數(shù)n都成立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f (x)是定義在R上的不恒為零的函數(shù),且對于任意的a、b∈R都滿足f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判斷f (x)的奇偶性,并證明你的結(jié)論;
(3)若數(shù)學(xué)公式表示數(shù)列{bn}的前n項(xiàng)和.試問:是否存在關(guān)于n的整式g (n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g (n)對于一切不小于2的自然數(shù)n恒成立?若存在,寫出g(n)的解析式,并加以證明;若不存在,試說明理由.

查看答案和解析>>

同步練習(xí)冊答案