【題目】一輛單向行駛的汽車,滿載為25人,全程共設(shè)14個車站,途中每個車站均可上下乘客,由不同的起點(diǎn)到達(dá)不同的終點(diǎn)的乘客應(yīng)購買不同的車票,在一次單程行駛中,車上最多賣出不同的車票的個數(shù)是( )
A.63B.65C.67D.69
【答案】C
【解析】
根據(jù)汽車要賣最多種票,車上應(yīng)準(zhǔn)備每個車站到達(dá)后它后面每一個車站的車票,然后再以前面個車站中的每一個作為起點(diǎn),后面個車站作為終點(diǎn),求出車票數(shù),再根據(jù)滿載為25人,即可得出答案.
上應(yīng)準(zhǔn)備每個車站到達(dá)后它后面每一個車站的車票,
所以一共應(yīng)準(zhǔn)備(種),
但不可能在一次單程行駛中都賣得出去,
以前面個車站中的每一個作為起點(diǎn),后面個車站作為終點(diǎn),
應(yīng)當(dāng)有(種),
但持有這種票的乘客都要通過號車站與號車站之間,
但由于汽車滿員為25人,
所以這種車票至少會有(種)賣不出去,
所以車上最多賣出不同的車票的個數(shù)是(種).
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個不同的單位向量與之間滿足關(guān)系:,其中.
(1)若,求的解析式;
(2)能否和垂直?能否和平行?若不能,則說明理由;若能,則求出對應(yīng)的k值;
(3)求與夾角的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱錐的高為6,內(nèi)切球(與四個面都相切)表面積為,則其底面邊長為( )
A. 18 B. 12 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實(shí)數(shù),函數(shù).
(1)若是函數(shù)的一個極值點(diǎn),求實(shí)數(shù)的取值;
(2)設(shè),若,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的方程為,曲線:(為參數(shù),),在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線:.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線有公共點(diǎn),且直線與曲線的交點(diǎn)恰好在曲線與軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,平面ABCD,平面ABCD,且,G為線段EC上的動點(diǎn),則下列結(jié)論中正確的是______
;該幾何體外接球的表面積為;
若G為EC中點(diǎn),則平面AEF;
的最小值為3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓內(nèi)接等腰梯形中,已知,對角線、交于點(diǎn),且圖中各條線段長均為正整數(shù),,圓的半徑.
(1)求證:圖中存在一個三角形,其三邊長均為質(zhì)數(shù)且組成等差數(shù)列;
(2)若給圖中的線(包括圓、梯形、梯形的對角線)作點(diǎn)染色,使、、染上紅色,其他點(diǎn)染上紅藍(lán)色之一,求證:圖中存在三個同色點(diǎn),兩兩距離相等且長度為質(zhì)數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com