8.已知cos($α-\frac{π}{3}$)-cosα=$\frac{1}{3}$,則cos($α+\frac{π}{3}$)的值為( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

分析 利用兩角差的余弦函數(shù)公式化簡(jiǎn)已知可得-$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα=$\frac{1}{3}$,由兩角和的余弦函數(shù)公式化簡(jiǎn)所求即可計(jì)算得解.

解答 解:∵cos($α-\frac{π}{3}$)-cosα=$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα-cosα=-$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα=$\frac{1}{3}$,
∴cos($α+\frac{π}{3}$)=$\frac{1}{2}$cosα-$\frac{\sqrt{3}}{2}$sinα=-(-$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)=-$\frac{1}{3}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了兩角和與差的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知復(fù)數(shù)z=$\frac{2-i}{1+i}$,其中i是虛數(shù)單位,則z的模是$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.環(huán)境監(jiān)測(cè)中心監(jiān)測(cè)我市空氣質(zhì)量,每天都要記錄空氣質(zhì)量指數(shù)(指數(shù)采取10分制,保留一位小數(shù)).現(xiàn)隨機(jī)抽取20天的指數(shù)(見(jiàn)下表),將指數(shù)不低于8.5視為當(dāng)天空氣質(zhì)量?jī)?yōu)良.
 天數(shù) 134 7 810 
 空氣質(zhì)量指數(shù) 7.18.3  7.3 9.5 8.6 7.7 8.7 8.88.7  9.1
 天數(shù) 1112 13 14 1516 17 18 19 20 
 空氣質(zhì)量指數(shù) 7.4 8.5 9.7 8.4 9.6 7.6 9.4 8.9 8.3 9.3
(Ⅰ)求從這20天隨機(jī)抽取3天,至少有2天空氣質(zhì)量為優(yōu)良的概率;
(Ⅱ)以這20天的數(shù)據(jù)估計(jì)我市總體空氣質(zhì)量(天數(shù)很多).若從我市總體空氣質(zhì)量指數(shù)中隨機(jī)抽取3天的指數(shù),用X表示抽到空氣質(zhì)量為優(yōu)良的天數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知直線l1:x+2y-4=0,l2:2x+my-m=0(m∈R),且l1與l2平行,則m=4,l1與l2之間的距離為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,且AB=$\sqrt{2}$,∠ABC=60°,點(diǎn)A在平PBC上的射影為PB的中點(diǎn)O,PB⊥AC.
(1)求證:PC=PD;
(2)求平面BAP與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知實(shí)數(shù)a,b滿足a2+4b2=4.
(1)求證:a$\sqrt{1+^{2}}$≤2;
(2)若對(duì)任意a,b∈R,.|x+1|-|x-3|≤ab恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,0<ϕ<$\frac{π}{2}$)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為$\frac{π}{4}$,且圖象上一個(gè)最低點(diǎn)為$M(\frac{π}{3},-1)$.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,$\frac{π}{2}$]上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=a(x-1),g(x)=(ax-1)ex,a∈R.
(Ⅰ)判斷直線y=f(x)能否與曲線y=g(x)相切,并說(shuō)明理由;
(Ⅱ)若不等式f(x)>g(x)有且僅有兩個(gè)整數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)為F1、F2,在雙曲線上存在點(diǎn)P滿足3|$\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}|≤2|\overrightarrow{{F_1}{F_2}}$|,則雙曲線的漸近線的斜率$\frac{a}$的取值范圍是( 。
A.$0<\frac{a}≤\frac{3}{2}$B.$\frac{a}≥\frac{3}{2}$C.$0<\frac{a}≤\frac{{\sqrt{5}}}{2}$D.$\frac{a}≥\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案