如圖,兩條相交線段、的四個端點都在橢圓上,其中,直線的方程為,直線的方程為

(1)若,,求的值;
(2)探究:是否存在常數(shù),當變化時,恒有?

(1)   (2)

解析試題分析:
(1)聯(lián)立直線與橢圓方程可以求出的坐標,設(shè)出A點的坐標,且滿足A點在橢圓上和,即根據(jù)AB為角平分線且與x軸垂直可得AP與AQ所在直線的傾斜角互為補角(斜率互為相反數(shù)),故兩條件聯(lián)立即可求出m的值.
(2) 聯(lián)立直線與橢圓方程得到關(guān)于的坐標的韋達定理,由(1)這種特殊情況可得滿足題意的只可能是,故一一帶入驗證是否能使得即可.
試題解析:
(1)由,
解得,.            2分
因為,所以
設(shè),則,
化簡得,          5分
,聯(lián)立方程組,解得,或
因為平分,所以不合,故.           7分
(2)設(shè),,由,得
,,.            9分
若存常數(shù),當變化時,恒有,則由(Ⅰ)知只可能
①當時,取,等價于
,
,
,此式恒成立.
所以,存常數(shù),當變化時,恒有.          13分
②當時,取,由對稱性同理可知結(jié)論成立.
故,存常數(shù),當變化時,恒有.          15分
考點:斜率 橢圓

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

拋物線頂點在原點,它的準線過雙曲線=1(a>0,b>0)的一個焦點,并與雙曲線實軸垂直,已知拋物線與雙曲線的一個交點為,求拋物線與雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標為.

(1)求橢圓C的標準方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓經(jīng)過點,離心率,直線的方程為.

(1)求橢圓的方程;
(2)是經(jīng)過右焦點的任一弦(不經(jīng)過點),設(shè)直線與直線相交于點,記的斜率分別為.問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A,B,M為拋物線弧AB上的動點.

(1)若|AB|=8,求拋物線的方程;
(2)求的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,動點到兩定點構(gòu)成,且,設(shè)動點的軌跡為。

(1)求軌跡的方程;
(2)設(shè)直線軸交于點,與軌跡相交于點,且,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動點M(x,y)到直線l:x=4的距離是它到點N(1,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)過點P(0,3)的直線m與軌跡C交于A,B兩點,若A是PB的中點,求直線m的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為,且||=2,
點(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知△OFQ的面積為S,且·=1.設(shè)||=c(c≥2),S=c.若以O(shè)為中心,F(xiàn)為一個焦點的橢圓經(jīng)過點Q,當||取最小值時,求橢圓的方程.

查看答案和解析>>

同步練習冊答案