【題目】在一次抽獎(jiǎng)活動(dòng)中,有,,,6人獲得抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:若獲一等獎(jiǎng)后不再參加抽獎(jiǎng),獲得二等獎(jiǎng)的仍參加三等獎(jiǎng)抽獎(jiǎng).現(xiàn)在主辦方先從6人中隨機(jī)抽取2人均獲一等獎(jiǎng),再?gòu)挠嘞碌?/span>4人中隨機(jī)抽取1人獲二等獎(jiǎng),最后還從這4人中隨機(jī)抽取1人獲三等獎(jiǎng).

1)求能獲一等獎(jiǎng)的概率;

2)若,已獲一等獎(jiǎng),求能獲獎(jiǎng)的概率.

【答案】1; 2.

【解析】

1)利用列舉法求出基本事件數(shù),計(jì)算所求的概率值;

2)利用列舉法找出基本事件數(shù),再計(jì)算所求的概率值.

1)設(shè)能獲一等獎(jiǎng)為事件,事件等價(jià)于事件6人中隨機(jī)抽取兩人,能抽到,從6人中隨機(jī)抽取兩人的基本事件有:

,,,,,

,,,,,共15個(gè),

其中含有的有,,5個(gè),

所以,即能獲一等獎(jiǎng)的概率為

2)設(shè),已獲一等獎(jiǎng),能獲獎(jiǎng)為事件,已獲一等獎(jiǎng),

余下的4人中,獲獎(jiǎng)的基本事件有:

,,,,,

,,,,,16個(gè);

其中含有的有,,,,7種,

所以,即若,已獲一等獎(jiǎng),能獲獎(jiǎng)的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)有兩個(gè)零點(diǎn)

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在年的自主招生考試成績(jī)中隨機(jī)抽取名學(xué)生的筆試成績(jī),按成績(jī)分組:第,第,第,第,第得到的頻率分布直方圖如圖所示

分別求第組的頻率;

若該校決定在第組中用分層抽樣的方法抽取名學(xué)生進(jìn)入第二輪面試,

已知學(xué)生甲和學(xué)生乙的成績(jī)均在第組,求學(xué)生甲和學(xué)生乙同時(shí)進(jìn)入第二輪面試的概率;

根據(jù)直方圖試估計(jì)這名學(xué)生成績(jī)的平均分.(同一組中的數(shù)據(jù)用改組區(qū)間的中間值代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體是由棱臺(tái) 和棱錐拼接而成的組合體,其底面四邊形是邊長(zhǎng)為 的菱形,且 , 平面 ,

1)求證:平面 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,,.MCD的中點(diǎn).

1)若點(diǎn)EPC的中點(diǎn),求證:BE∥平面PAD

2)當(dāng)平面PBD⊥平面ABCD時(shí),求點(diǎn)A到平面CEM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程恰有四個(gè)不同的實(shí)數(shù)根,當(dāng)函數(shù)時(shí),實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知焦點(diǎn)在軸上的拋物線過(guò)點(diǎn),橢圓的兩個(gè)焦點(diǎn)分別為,,其中的焦點(diǎn)重合,過(guò)點(diǎn)的長(zhǎng)軸垂直的直線交,兩點(diǎn),且,曲線是以坐標(biāo)原點(diǎn)為圓心,以為半徑的圓.

(1)求的標(biāo)準(zhǔn)方程;

(2)若動(dòng)直線相切,且與交于,兩點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于AB的點(diǎn),直線交直線于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年2月13日《煙臺(tái)市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來(lái)全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.

(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中間值代表);

(2)由直方圖可以認(rèn)為,目前該校學(xué)生每周的閱讀時(shí)間服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差

(i)一般正態(tài)分布的概率都可以轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)分布的概率進(jìn)行計(jì)算:若,令,則,且.利用直方圖得到的正態(tài)分布,求

(ii)從該高校的學(xué)生中隨機(jī)抽取20名,記表示這20名學(xué)生中每周閱讀時(shí)間超過(guò)10小時(shí)的人數(shù),求(結(jié)果精確到0.0001)以及的數(shù)學(xué)期望.

參考數(shù)據(jù):.若,則.

查看答案和解析>>

同步練習(xí)冊(cè)答案