11.若函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b(其中a,b不同時(shí)為0),則稱函數(shù)y=f(x)為“準(zhǔn)奇函數(shù)”,稱點(diǎn)(a,b)為函數(shù)f(x)的“中心點(diǎn)”.現(xiàn)有如下命題:
①函數(shù)f(x)=sinx+1是準(zhǔn)奇函數(shù);
②若準(zhǔn)奇函數(shù)y=f(x)在R上的“中心點(diǎn)”為(a,f(a)),則函數(shù)F(x)=f(x+a)-f(a)為R上的奇函數(shù);
③已知函數(shù)f(x)=x3-3x2+6x-2是準(zhǔn)奇函數(shù),則它的“中心點(diǎn)”為(1,2);
其中正確的命題是①②③..(寫出所有正確命題的序號(hào))

分析 在①中,f(0+x)+f(0-x)=2,得a=0,b=1,滿足“準(zhǔn)奇函數(shù)”的定義;在②中,根據(jù)函數(shù)“準(zhǔn)奇函數(shù)”的定義,利用函數(shù)奇偶性的定義即可證明函數(shù)F(x)=f(x+a)-f(a)為R上的奇函數(shù);在③中,f(1+x)+f(1-x)=(1+x)3-3(1+x)2+6(1+x)-2+(1-x)3-3(1-x)2+6(1-x)-2=4,得點(diǎn)(1,2)為函數(shù)f(x)的“中心點(diǎn)”.

解答 解:在①中,∵函數(shù)f(x)=sinx+1,∴f(0+x)+f(0-x)=2,
∴a=0,b=1,滿足“準(zhǔn)奇函數(shù)”的定義,故①正確;
在②中,若F(x)=f(x+a)-f(a),
則F(-x)+F(x)=f(x+a)-f(a)+f(-x+a)-f(a)=f(a-x)+f(a+x)-2f(a),
∵f(x)在R上的“中心點(diǎn)”為(a,f(a)),
∴f(a-x)+f(a+x)=2f(a),
即F(-x)+F(x)=f(a-x)+f(a+x)-2f(a)=0,
∴F(-x)=-F(x),∴函數(shù)F(x)=f(x+a)-f(a)為R上的奇函數(shù),∴故②正確.
在③中,函數(shù)f(x)=x3-3x2+6x-2,
∴f(1+x)+f(1-x)=(1+x)3-3(1+x)2+6(1+x)-2+(1-x)3-3(1-x)2+6(1-x)-2=4,
∴點(diǎn)(1,2)為函數(shù)f(x)的“中心點(diǎn)”,故③正確.
故答案為:①②③.

點(diǎn)評(píng) 本題主要考查函數(shù)中心的定義的應(yīng)用,綜合性較強(qiáng),運(yùn)算量量較大,難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某電視競(jìng)賽截面設(shè)置了先后三道程序,優(yōu)、良、中,若選手在某道程序中獲得“中”,則該選手在本道程序中不通過(guò),且不能進(jìn)入下面的程序,選手只有全部通過(guò)三道程序才算通過(guò),某選手甲參加了該競(jìng)賽節(jié)目,已知甲在每道程序中通過(guò)的概率為$\frac{3}{4}$,每道程序中得優(yōu)、良、中的概率分別為p1,$\frac{1}{2}$,p2
(1)求甲不能通過(guò)的概率;
(2)設(shè)ξ為在三道程序中獲優(yōu)的次數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.復(fù)數(shù)$z=\frac{3+7i}{i}$的實(shí)部與虛部分別為(  )
A.7,-3B.7,-3iC.-7,3D.-7,3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若sinα=$\frac{\sqrt{3}}{2}$,則cos2α=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.(1+x-$\frac{2}{x}$)6的展開(kāi)式中的常數(shù)項(xiàng)是141.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{a}{{{a^2}-1}}({a^x}-\frac{1}{a^x})$(a>0且a≠1)
(1)①若a=$\sqrt{2}$,判斷函數(shù)的單調(diào)性(可不證明);②判斷并證明函數(shù)的奇偶性;
(2)問(wèn):在y=f(x)的圖象上是否存在兩個(gè)不同點(diǎn)A、B,使直線AB與x軸平行?若存在,證明你的結(jié)論;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在銳角△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c且$bcosC=\sqrt{2}acosB-ccosB$,
(1)求角B大小
(2)設(shè)A=θ,求函數(shù)$f(θ)=2{sin^2}(\frac{π}{4}+θ)-\sqrt{3}cos2θ-2$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=Msin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分圖象如下圖所示,其中A,B分別為函數(shù)f(x)圖象的一個(gè)最高點(diǎn)和最低點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別為1,4,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則函數(shù)f(x)的一個(gè)單調(diào)減區(qū)間為( 。
A.(-6,-3)B.(6,9)C.(7,10)D.(10,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,圓柱的高為2,底面半徑為3,AE,DF是圓柱的兩條母線,B、C是下底面圓周上的兩點(diǎn),已知四邊形ABCD是正方形.
(1)求證:BC⊥BE;
(2)求幾何體AEB-DFC的體積;
(3)求平面DFC與平面ABF所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案