設(shè)F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使(
OP
+
OF2
)•
F2P
=0
,O為坐標(biāo)原點(diǎn),且|
PF1
|=
3
|
PF2
|
,則該雙曲線的離心率為
 
分析:取PF2的中點(diǎn)A,由(
OP
+
OF2
)•
F2P
=0
,可得
OA
F2P
,由OA是△PF1F2的中位線,得到PF1⊥PF2,由雙曲線的定義求出|PF1|和|PF2|的值,進(jìn)而在△PF1F2中,由勾股定理可得結(jié)論.
解答:解:取PF2的中點(diǎn)A,則
(
OP
+
OF2
)•
F2P
=0
,
∴2
OA
F2P
=0,
OA
F2P
,
∵OA是△PF1F2的中位線,
∴PF1⊥PF2,OA=
1
2
PF1
由雙曲線的定義得|PF1|-|PF2|=2a,
∵|PF1|=
3
|PF2|,
∴|PF2|=
2a
3
-1
,|PF1|=
2
3
a
3
-1

△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2
∴(
2a
3
-1
2+(
2
3
a
3
-1
2=4c2,
∴e=
3
+1

故答案為:
3
+1
點(diǎn)評(píng):本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,判斷△PF1F2是直角三角形,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年聊城期末理)設(shè)F1,F(xiàn)2分別是雙 曲線的左、右焦點(diǎn)。若雙曲線上存在點(diǎn)A,使,則雙曲線的離心率為    (    )

       A.                   B.                 C.                  D.

查看答案和解析>>

同步練習(xí)冊答案