己知{an}(n∈N*)為等差數(shù)列,其公差為-2,且a7是a3與a9的等比中項,則{an}的首項a1=(  )
A.14B.16C.18D.-20
∵{an}(n∈N*)為等差數(shù)列,其公差為-2,
∴a7=a1+12,a3=a1+4,a9=a1+16,
∵a7是a3與a9的等比中項,
(a1+12)2=(a1+4)(a1+16),
解得a1=-20.
故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

己知數(shù)列{an}的前n項和為Sn,a1=2,當n≥2時,Sn-1+1,an,Sn+1成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3
an+1
2
,Tn是數(shù)列{
1
bnbn+1
}
的前n項和,求使得Tn
m
20
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣州一模)己知{an}(n∈N*)為等差數(shù)列,其公差為-2,且a7是a3與a9的等比中項,則{an}的首項a1=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

己知{an}(n∈N*)為等差數(shù)列,其公差為-2,且a7是a3與a9的等比中項,則{an}的首項a1=


  1. A.
    14
  2. B.
    16
  3. C.
    18
  4. D.
    -20

查看答案和解析>>

科目:高中數(shù)學 來源:2012年廣東省廣州市高考數(shù)學一模調研交流試卷(理科)(解析版) 題型:選擇題

己知{an}(n∈N*)為等差數(shù)列,其公差為-2,且a7是a3與a9的等比中項,則{an}的首項a1=( )
A.14
B.16
C.18
D.-20

查看答案和解析>>

同步練習冊答案