已知棱長為1的正方體AC1,E、F分別是B1C1、C1D的中點.
(1)求點A1到平面的BDEF的距離;
(2)求直線A1D與平面BDEF所成的角.
(1)點到平面的BDEF的距離;(2)直線A1D與平面BDEF所成的角為.
解析試題分析:(1)建立空間坐標系,分別寫出各點的坐標,設點在平面BDEF上的射影為H,連結(jié)A1D,知A1D是平面BDEF的斜線段;求出的長即為點到平面的BDEF的距離;
(2)由(1)可知,△為等腰直角三角形,即直線A1D與平面BDEF所成的角.
(1)如圖,建立空間直角坐標系D—xyz,
則知B(1,1,0),
設是平面的法向量,
得則
令.
設點在平面BDEF上的射影為H,連結(jié)A1D,知A1D是平面BDEF的斜線段.
即點到平面BDEF的距離為1.
(2)由(1)知,=1,又A1D=,則△為等腰直角三角形,
考點:空間距離、空間角的求法.
科目:高中數(shù)學 來源: 題型:解答題
如圖,正方體的邊長為2,,分別為,的中點,在五棱錐中,為棱的中點,平面與棱,分別交于,.
(1)求證:;
(2)若底面,且,求直線與平面所成角的大小,并求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱中,
,。M、N分別是AC和BB1的中點。
(1)求二面角的大小。
(2)證明:在AB上存在一個點Q,使得平面⊥平面,
并求出的長度。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在△ABC中,∠ABC=,∠BAC,AD是BC上的高,沿AD把△ABD折起,使∠BDC.
(1)證明:平面ADB⊥平面BDC;
(2)設E為BC的中點,求與夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在正四棱錐P-ABCD中,PA=AB=,點M,N分別在線段PA和BD上,BN=BD.
(1)若PM=PA,求證:MN⊥AD;
(2)若二面角M-BD-A的大小為,求線段MN的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知空間三點A(-2,0,2),B(-1,1,2),C(-3,0,4).設a=,b=.
(1)求a和b的夾角θ;
(2)若向量ka+b與ka-2b互相垂直,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
已知A、B、C三點不共線,對平面ABC外一點O,給出下列表達式:
其中x,y是實數(shù),若點M與A、B、C四點共面,則x+y="___"
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com