已知函數(shù)
(1)若函數(shù)有最 大值,求實(shí)數(shù)的值
(2)解不等式
(1)
(2) (10分)

試題分析:(1)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824010930506704.png" style="vertical-align:middle;" />,則可知,由于函數(shù)有最 大值,則可知最大值即為當(dāng)x=- 的極大值,故可知解得為 (4分)
(2)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824010930568757.png" style="vertical-align:middle;" />,則需要對(duì)于參數(shù)a,分情況討論的得到。
 (6分)
 (7分)
 (9分)
 (10分)
 (12分)
點(diǎn)評(píng):根據(jù)導(dǎo)數(shù)的符號(hào)判定函數(shù)的最值點(diǎn),同事能利用分類討論思想求解不等式。屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1="3," x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè),解關(guān)于x的不等式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

鑫隆房地產(chǎn)公司用2160萬元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為層,則每平方米的平均建筑費(fèi)用為(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=,g(x)=2|x|+a.
(1)當(dāng)a=0時(shí),解不等式f(x)≥g(x);
(2)若存在x∈ R,使得f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824011320825535.png" style="vertical-align:middle;" />,當(dāng)時(shí),,且對(duì)于任意的,恒有成立.
(1)求;
(2)證明:函數(shù)上單調(diào)遞增;
(3)當(dāng)時(shí),
①解不等式
②求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)于區(qū)間上有意義的兩個(gè)函數(shù)如果有任意,均有則稱上是接近的,否則稱上是非接近的.現(xiàn)有兩個(gè)函數(shù)給定區(qū)間, 討論在給定區(qū)間上是否是接近的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

據(jù)國(guó)家海洋研究機(jī)構(gòu)統(tǒng)計(jì),中國(guó)有約120萬平方公里的海洋國(guó)土處于爭(zhēng)議中,該數(shù)據(jù)可用科學(xué)記數(shù)法表示為    平方公里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,函數(shù)
(1)若是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)若有兩個(gè)極值點(diǎn)、,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù))在處均有極值,則下列點(diǎn)中一定在軸上的是(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案